ON INJECTIVITY OF COMBINATORIAL RADON TRANSFORM OF ORDER FIVE

Tewodros Amdeberhan and Melkamu Zeleke

Abstract

In the present work, we give a proof of the injectivity of the combinatorial radon transform of order five.

The problem of determining members of a set by their sums of a fixed order was posed by Leo Moser and partially settled by Ewell, Fraenkel, Gordon, Selfridge, and Straus. Following the notation of [BL], the general problem can be stated in the following way.

For any given $(k, n) \in \mathbb{Z} \times \mathbb{Z}$, with $2 \leq k \leq n$, we choose arbitrarily an n-set $X_{n}=$ $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ then form the set $W_{n}^{k}\left(X_{n}\right)=\left\{\sigma_{i}\right\}$ of all sums of k distinct elements of X_{n} and ask:
Does there exist an n-set X_{n}^{\prime} different from X_{n} giving rise to the same set of sums as does X_{n} ? More formally, we can describe the problem as follows:
Define a mapping W_{n}^{k} from the set $\left\{X_{n}\right\}$ of all n-sets to the set of all $\binom{n}{k}$-sets by the rule:

$$
W_{n}^{k}\left(\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}\right)=\left\{x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{k}}: 1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n\right\}
$$

and try to determine whether W_{n}^{k} is one-to-one.
Definition: W_{n}^{k} is called a combinatorial radon transform of order k.
It is known [E], [FGS], [SS] that W_{n}^{k} is injective if

$$
\begin{equation*}
A(n, k, s)=\sum_{i=0}^{k-1}(-1)^{i}\binom{n}{i}(k-i)^{s-1} \neq 0 \tag{1}
\end{equation*}
$$

for each s in $\{1,2, \ldots, n\}$.
Remarks: The following results are also known.
(1) if $k=2, W_{n}^{2}$ is injective for all n which are not a power of $2 . W_{n}^{2}$ is not injective if n is a power of 2 [SS].
(2) if $k=3, W_{n}^{3}$ is injective for all $n \geq 3$ and $n \neq 3,6,27$, and 486. W_{n}^{k} is not injective if $n=3,6,27$, [BL], [EZ] or 486 [BL].

[^0](3) If $k=4, W_{n}^{4}$ is injective for all $n \geq 4$ and $n \neq 4$ and $8 . W_{n}^{k}$ is not injective if $n=4$, or 8 [E], [EZ]. Here we would like to point out that while $A(12,4,6)=0$, John Ewell proved W_{12}^{4} is injective, thereby showing that condition (1), though necessary, is not sufficient.

In this paper, we settle the problem for the combinatorial radon transform of order five.
In the case $k=5$, condition (1) reduces to a polynomial in $n, 2^{s}, 3^{s}, 5^{s}$, and it can be written as: W_{n}^{5} is injective if

$$
\begin{align*}
A(n, 5, s) & =n^{4}-\left(2^{s+1}+6\right) n^{3}+\left(4 \cdot 3^{s}+3 \cdot 2^{s+1}+11\right) n^{2} \\
& -\left(4 \cdot 3^{s}+3 \cdot 2^{2 s+1}+2^{s+2}+6\right) n+24 \cdot 5^{s-1} \neq 0 \tag{2}
\end{align*}
$$

for every $s \in\{1,2, \ldots, n\}$.
Consider the function

$$
B(n, s)=n^{4}+a_{3} n^{3}+a_{2} n^{2}+a_{1} n+a_{0}
$$

where

$$
\begin{array}{ll}
a_{3}=-2\left(2^{s}+3\right) & a_{2}=4 \cdot 3^{s}+3 \cdot 2^{s+1}+11 \\
a_{1}=-2\left(2 \cdot 3^{s}+3 \cdot 4^{s}+2^{s+1}+3\right) & a_{0}=2^{3} \cdot 3 \cdot 5^{s-1}
\end{array}
$$

for integers $1 \leq s \leq n$.
Let n be an integral solution of

$$
\begin{equation*}
B(n, s)=0 . \tag{3}
\end{equation*}
$$

Note: n must have the form

$$
\begin{equation*}
n=2^{\alpha} \cdot 3^{\beta} \cdot 5^{\gamma} \tag{4}
\end{equation*}
$$

for $\alpha=0,1,2,3 ; \beta=0,1 ; \gamma=0,1,2,3, \ldots, s-1$.
So, throughout this investigation we assume that n has the form (4).
Dividing (3) by n we get:

$$
\begin{equation*}
\tilde{B}(n, s)=n^{3}+a_{3} n^{2}+a_{2} n+a_{1}+\tilde{a}_{0}=0 \tag{5}
\end{equation*}
$$

where $\tilde{a}_{0}=2^{3-\alpha} \cdot 3^{1-\beta} \cdot 5^{s-1-\gamma}$.

Observations:

(1) α cannot be 3 : if $\alpha=3$, then $\tilde{B}(n, s) \not \equiv 0(\bmod 2)$ since $2 \nmid \tilde{a}_{0}$, but 2 divides the rest of the terms.
(2) α cannot be 2: if $\alpha=2, \beta=1$ then similarly $\tilde{B}(n, s) \not \equiv 0(\bmod 8)($ in fact $\tilde{B}(n, s) \equiv 4$ $(\bmod 8))$.
If $\alpha=2, \beta=0$, then likewise $\tilde{B}(n, s) \not \equiv 0(\bmod 16)$.
(3) $\alpha=1, \beta=1$ is not possible: $\tilde{B}(n, s) \not \equiv 0(\bmod 8)$.

Hence we gather that n takes one of the forms:

$$
\begin{equation*}
n=2 \cdot 5^{\gamma} \text { or } n=3 \cdot 5^{\gamma} \text { or } n=5^{\gamma} . \tag{6}
\end{equation*}
$$

On the other hand, if $n>2\left(2^{s}+3\right)$, then

$$
n^{4}+a_{3} n^{3}=n^{3}\left(n-2\left(2^{s}+3\right)\right)>0,
$$

and moreover

$$
\begin{aligned}
a_{2} n^{2}+a_{1} n= & n\left\{\left(4 \cdot 3^{s}+6 \cdot 2^{s}+11\right) n-\left(4 \cdot 3^{s}+6 \cdot 4^{s}+2^{s+2}+6\right)\right\} \\
> & n\left\{\left(4 \cdot 3^{s}+6 \cdot 2^{s}+11\right) 2^{s+1}-\left(4 \cdot 3^{s}+6 \cdot 4^{s}+2^{s+2}+6\right)\right\} \\
> & n\left\{\left(4 \cdot 3^{s} \cdot 2^{s+1}+6 \cdot 4^{s} \cdot 2+5 \cdot 2^{s+1}+6 \cdot 2^{s+1}\right)\right. \\
& \left.-\left(4 \cdot 3^{s}+6 \cdot 4^{s}+2 \cdot 2^{s+2}+6\right)\right\} \\
> & 0
\end{aligned}
$$

Hence, $B(n, s)>0$ if $n>2\left(2^{s}+3\right)$.
Note however that if $\gamma \geq \frac{1}{2} s+1$, then $n>2\left(2^{s}+3\right)$. This implies for such γ, the equation $B(n, s)=0$ has no integral solution n . Therefore, in the sequel it suffices to assume that $\gamma<\frac{1}{2} s+1$.

Notation: Let ord $d_{p} x$ denote the exponent of a prime p in the prime factorization of x .

Lemma:. If $5^{m} \leq s<5^{m+1}$ for any fixed $m \geq 0$, then $\mu:=\operatorname{ord}_{5} \tilde{a}_{1}(s) \leq m+2$.
Proof. Using the binomial theorem

$$
\begin{equation*}
(5-x)^{s}=(-1)^{s} x^{s}+(-1)^{s-1} 5 \cdot s \cdot x^{s-1}+\ldots \tag{7}
\end{equation*}
$$

Let $\tilde{a}_{1}:=2 \cdot 3^{s}+3 \cdot 4^{s}+2 \cdot 2^{s}+3$. Then $\tilde{a}_{1}=3\left(4^{s}+1\right)+2\left(3^{s}+2^{s}\right)$, and in light of (7) we can rewrite \tilde{a}_{1} as

$$
\tilde{a}_{1}=\left(3 \cdot 5 \cdot s+2 \cdot 5 \cdot s \cdot 2^{s-1}\right)+\ldots,
$$

for s odd.
Writing s in the form

$$
s=k_{m} 5^{m}+k_{m-1} 5^{m-1}+\cdots+k_{1} 5+k_{0} ; 0 \leq k_{i} \leq 4, \text { for all } i,
$$

define $j:=\min \left\{i \mid k_{i} \neq 0\right\}$. Then $s=k_{m} 5^{s}+\cdots+k_{j} 5^{j}$. Note that $k_{m} \geq 1, k_{j} \geq 1$.

Therefore, for s odd,

$$
\begin{aligned}
\tilde{a}_{1} & =5\left(3 \cdot k_{m} \cdot 5^{m}+2 \cdot k_{m} \cdot 5^{m} \cdot 2^{s-1}\right)+\ldots+5\left(3 \cdot k_{j} \cdot 5^{j}+2 \cdot k_{j} \cdot 5^{j} \cdot 2^{s-1}\right)+\ldots \\
& =5^{m+1}\left(3+2^{s}\right) k_{m}+\cdots+5^{j+1}\left(3+2^{s}\right) k_{j}+\ldots
\end{aligned}
$$

Hence

$$
\operatorname{ord}_{5} \tilde{a}_{1}(s) \leq j+2 \leq m+2 .
$$

For s even,

$$
x^{s}+(5-x)^{s}=2 x^{s}-5 \cdot s x^{s-1}+5^{2}\binom{s}{1} x^{s-2}-+\ldots
$$

Thus,

$$
\tilde{a}_{1}=2\left(3+2^{s+1}\right)-5 s\left(3+2^{s}\right)+5^{2}\binom{s}{1}\left(3+2^{s}\right)-+\ldots
$$

Writing s in the form:

$$
s=k_{m} 5^{s}+\ldots+k_{j} 5^{j}, j \text { as in above }
$$

we see that

$$
\tilde{a}_{1}=2\left(3+2^{s+1}\right)-k_{m} 5^{m+1}\left(3+2^{s}\right)-\cdots-k_{j} 5^{j+1}\left(3+2^{s}\right)+\ldots
$$

But $5 \nmid\left(3+2^{s}\right)$, while $5 \mid\left(3+2^{s+1}\right)$ as s is even. Thus $\tilde{a}_{1}=2^{s+1}-\left(3+2^{s}\right) \cdot 5(s-2)+\ldots$ is at most divisible by 5^{m+2} since $5^{m} \leq s<5^{m+1}$. Hence if s is even and $5^{m} \leq s<5^{m+1}$, then $\operatorname{Ord}_{5} \tilde{a}_{1}(s) \leq m+2$.

Now,
(1) Suppose that $\gamma \geq m+1$. Then $m+1 \leq \gamma<\frac{1}{2}(s+1)$.
(i) if $s-1-\gamma \geq m+1$, then $\tilde{B}(n, s) \not \equiv 0\left(\bmod 5^{m+1}\right)$ since $5^{m+1} \nmid a_{1}$ by the lemma above.
(ii) if $s-1-\gamma<\mu$, then $B(n, s) \not \equiv 0\left(\bmod 5^{\mu}\right)$ as $5^{\mu} \nmid \tilde{a}_{0}$.
(iii) if $s-1-\gamma=\mu$, then $\gamma=s-1-\mu \geq s-1-m$ by the lemma above. But then $s-1-m<\frac{1}{2} s+1$.

Therefore,

$$
5^{m-2} \leq s<2 m+4
$$

Hence $m \leq 3$.
(2) Suppose that $m-2 \leq \gamma \leq m$.

If $m \geq 4$, then $a_{0}(s)=24 \cdot 5^{s-1}>-a_{1} n-a_{3} n^{3}$ for n in one of the above forms. We then conclude that $B(n, s)>0$, that is, equation (3) has no integral solution unless $m \leq 3$.

Conclusion: In all cases, $m \leq 3$. This shows that it remains to verify whether n in the form (4) is a solution of equation (3) for $0 \leq \gamma<\frac{1}{2} s+1 \leq \frac{1}{2} 5^{2}+1 \leq 14$. (Recall that for $m \leq 3$, we also have $1 \leq s \leq 24$.) That is, we simply test if

$$
\begin{equation*}
B(n, s)=0 \text { for } 0 \leq \gamma \leq 14,1 \leq s \leq 24 \tag{8}
\end{equation*}
$$

We carried out this test using Maple*, and found that (8) is true only if $n=2,3,4,5$, or 10 .
Thus we have proved the following theorem:
Theorem. Let n and s be positive integers such that $s \leq n$. Then

$$
B(n, s)=0
$$

only if $n=2,3,4,5$, or 10 .
Corollary. The combinatorial radon transform of order five is injective for all $n \geq 5$ and $n \neq 5$, and 10 .

Note: W_{5}^{5} is clearly noninjective and W_{10}^{5} is not injective since

$$
X:=\left\{0^{1}, 5^{6}, 10^{3}\right\} \neq Y:=\left\{2^{3}, 7^{6}, 12^{1}\right\}
$$

but

$$
W_{10}^{5}(X)=W_{10}^{5}(Y)
$$

[EZ].

[^1]
References:

[BL] Jan Boman and Svante Linusson, Examples of non-uniqueness for the combinatorial radon transform mudulo the symmetric group, Mat. Scan., to appear.
[E] John A. Ewell, On the determintion of sets by sets of sums of fixed order, Canadian Journal of Mathematics 20 (1968), 596-611.
[EZ] Shalosh B. Ekhad and Melkamu Zeleke, Finding examples of noninjectivity for combinatorial radon transform, Preprint.
[G] Richard K. Guy, Unsolved Problems in Number Theory, volume 1. Springer-Verlag, 1981; second edition, 1994.
[FGS] A. S. Fraenkel, B. Gordon and E.G. Straus, On the determination of sums of a certain order, Pacific Journal of Mathematics 12 (1962), 187-196.
[SS] J. L. Selfridge and E. G. Straus, On the determination of numbers by their sums of a fixed order, Pacific Journal of Mathematics 8 (1958), 847-856.

Temple University, Department of Mathematics, Philadelphia, PA 19122
E-mail address: [tewodros,melkamu]@math.temple.edu,
World Wide Web: http://www.math.temple.edu/~[tewodros,melkamu]

[^0]: We would like to express our deepest gratitude to our advisor Professor Doron Zeilberger for his inspirations and strong support.

[^1]: *A short Maple program that carries out the test is available in the WWW under http://www.math.temple.edu ${ }^{\sim}$ [melkamu,tewodros].

