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Abstract

We consider the problem of deciding whether a given rational function has a power series
expansion with all its coefficients positive. Introducing an elementary transformation that
preserves such positivity we are able to provide an elementary proof for the positivity of
Szegö’s function

1
(1− x)(1− y)+ (1− y)(1− z)+ (1− z)(1− x)

which has been at the historical root of this subject starting with Szegö. We then demon-
strate how to apply the transformation to prove a 4-dimensional generalization of the
above function, continue with a brief discussion concerning the optimality of this transfor-
mation, and close with an elementary proof of a conjecture raised by Kauers.

1 Introduction

In 1930 H. Lewy and K. Friedrichs conjectured that the coefficients a(k, m, n) in the expansion

1

(1− x)(1− y) + (1− y)(1− z) + (1− z)(1−x)
=

∑

k,m,n>0

a(k, m, n)xk ym zn (1.1)

are all positive. This was proved shortly after by G. Szegö employing heavy machinery in
[Szegö, 1933], but he remarks himself “die angewendeten Hilfsmittel stehen allerdings in keinem
Verhältnis zu der Einfachheit des Satzes”1.1. Motivated by these words, T. Kaluza gave an ele-
mentary but technically difficult proof that was published in the very same journal
[Kaluza, 1933]. R. Askey and G. Gasper also proved the above positivity in
[Askey and Gasper, 1972] using some of Szegö’s observations but avoiding the use of Bessel func-
tions in favour of Legendre polynomials. The problem has also been considered in the recent
paper [Kauers, 2007] by M. Kauers from the viewpoint of computer algebra, and Kauers estab-
lishes the result under the constraint that k 6 16 by finding appropriate recurrences. We provide
an elementary proof of Szegö’s result with the main ingredient being a simple positivity pre-
serving operation in the spirit of [Gillis et al., 1983], whence we reduce the positivity of the coef-
ficients a(k, m, n) to the positivity of another rational function that is easier to handle. While
our proof is indeed elementary, to check that the latter rational function is positive1.2 is most
conveniently done with the aid of computer algebra.

2 A Positivity Preserving Operation

The following elementary proposition is related to the positivity preserving operations given by
J. Gillis, B. Reznick and D. Zeilberger in [Gillis et al., 1983, Proposition 2]. In fact, it would be
a special case if 1/(1−x−x y) had positive coefficients.

Proposition 2.1. Suppose that the polynomial p(x, y, z) is linear in x. If 1/p(x, y, z) has posi-

tive coefficients then so does
1

p(x, y, z)− x p(0, y, z)
.

1.1. the used tools, however, are in no proportion to the simplicity of the statement

1.2. although a bit sloppy, we will stick to calling a rational function positive meaning that all its Taylor coeffi-
cients are positive
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Proof. Write p(x, y, z)= a(y, z)− x b(y, z). Since

1

a(y, z)− x b(y, z)
=
∑

n>0

b(y, z)n

a(y, z)n+1 xn

has positive coefficients so has bn/an+1. The quotient

b(y, z)n

a(y, z)n+1

xn

(1− x)n+1

has nonnegative coefficients, and for n = 0 they are all positive. This finally implies the posi-
tivity of

∑

n>0

(x b(y, z))
n

((1−x)a(y, z))n+1 =
1

(1−x) a(y, z)− x b(y, z)
. �

Reading proposition 2.1 the other way round, in order to establish the positivity of 1/p(x, y, z)
it is sufficient to do so for (p(x, y, z) + x p(0, y, z))−1. Applying this repeatedly to each variable,
provided that p is linear in each of them, shows that it is further sufficient to prove the posi-
tivity of

(

p(x, y, z) +x p(0, y, z)+ y p(x, 0, z)+ z p(x, y, 0)
+x y p(0, 0, z)+ y z p(x, 0, 0)+ z x p(0, y, 0) +x y z p(0, 0, 0)

)

−1

.

This is again a symmetric rational function whenever 1/p(x, y, z) is.

Remark 2.2. Of course, proposition 2.1 generalizes to higher dimensions. It is also readily veri-
fied that under the given hypothesis the rational function

1

p(x, y, z)−λx p(0, y, z)

has positive coefficients for any λ> 0. We will make use of this later.

3 Szegö’s Rational Function

Theorem 3.1. Szegö’s rational function

f(x, y, z) ,
1

1− 2 (x + y + z)+ 3 (x y + y z + z x)
is positive.

Remark 3.2. Note that up to rescaling this is the rational function from (1.1), namely

1

3
f
(

x

3
,
y

3
,
z

3

)

=
1

(1− x)(1− y) + (1− y)(1− z) + (1− z)(1−x)
.

Proof. The denominator of f is linear in all the variables x, y, z, so we can apply our inverted
positivity preserving operation repeatedly to x, y, z. Doing so we obtain

g(x, y, z) ,
1

1− (x + y + z) +4 x y z
.

Positivity of g(x, y, z) now implies positivity of f(x, y, z).
The positivity of g, however, is well-known, and several short proofs have been given in the lit-
erature (not so, to our knowledge, for f). One possibility is to verify by differentiation that the
coefficients b(k, m, n) of g satisfy the following recurrence, first observed by J. Gillis and J.
Kleeman [Gillis and Kleeman, 1979],

(1+ n) b(k + 1, m +1, n + 1)= 2 (n + m− k) b(k +1, m, n)+ (1+ n−m + k) b(k + 1, m +1, n),

which together with the initial b(0, 0, 0) =1 proves positivity of the b(k, m, n) by induction. �
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Kauers describes in [Kauers, 2007] how to automatically find positivity proving recurrences with
computer algebra, and also remarks that no such first-order recurrence with linear coefficients
exists for Szegö’s f . Note that once such a recurrence is guessed, for instance using a computer,
proving it is just a matter of verifying that the generating function solves the corresponding dif-
ferential equation.
Another simple proof of the positivity of g based on MacMahon’s master theorem is given by M.
Ismail and M. Tamhankar in [Ismail and Tamhankar, 1979]. We will discuss this theorem in sec-
tion 5. The reason for doing so is that we discovered the transformation presented in proposition
2.1 by applying MacMahon’s master theorem, whence it is possible to just see its impact.

4 A 4-Dimensional Generalization

Following [Szegö, 1933, §3] we define

qn(t)=
∏

k=1

n

(t−xk),

and observe that one can recover Szegö’s function as

1

q3
′(1)

=
1

(1− x1)(1− x2) + (1− x2)(1− x3)+ (1−x3)(1−x1)
.

Szegö proves that 1/qn
′ (1) as a rational function in x1, � , xn has positive Taylor coefficients for

all n > 2, and remarks that the essential difficulty lies in the cases n = 3 and n = 4. While our
previous discussion covers n = 3, we now want to briefly demonstrate how to use proposition 2.1
to also establish the case n = 4 in an elementary way.

Theorem 4.1. The rational function

1

q4
′(1)

=
1

∑

i<j<k
(1− xi)(1− xj)(1−xk)

,

where i, j , k = 1, 2, 3, 4, is positive.

Proof. Expanding the denominator of 1/q4
′(1) and rescaling produces the rational function

1

1− 3
∑

i
xi +8

∑

i<j
xixj − 16

∑

i<j<k
xixjxk

.

Applying the inverted positivity preserving operation from proposition 2.1 repeatedly to x1, x2,

x3, x4 twice, noting that order doesn’t matter, (or with λ = 2 as in remark 2.2) we find that it
suffices to establish positivity of

1

1−
∑

i
xi + 4

∑

i<j<k
xixjxk − 16 x1x2x3x4

.

This again is a well-known result. In particular, Gillis, Reznick and Zeilberger demonstrate in
[Gillis et al., 1983] how a single application of their elementary methods can be used to deduce
the desired positivity. �

For other possible generalizations of Szegö’s function the interested reader is referred to
[Askey and Gasper, 1972].

5 MacMahon’s Master Theorem

The following is a celebrated result of P. A. MacMahon published in [MacMahon, 1915], and
coined by himself as “a master theorem in the Theory of Permutations”.
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Theorem 5.1. (MacMahon, 1915) Let R be a commutative ring, A ∈ Rn×n a matrix, and

x =(x1,� , xn) commuting indeterminants. For every multi-index m = (m1,� , mn)∈Z>0
n

[xm]
∏

i=1

n
(

∑

j=1

n

Ai,j xi

)mi

= [xm] det



In −A





x1 �
xn









−1

,

where [xm] denotes the coefficient of x1
m1�xn

mn in the expansion of what follows.

We find, preferably by using computer algebra, that Szegö’s function f(x, y, z) can be expressed
as

1

1− 2 (x + y + z) +3 (x y + y z + z x)
=det



I3−





2 − 1 − 1
− 1 2 − 1
− 1 − 1 2









x

y

z









−1

.

MacMahon’s theorem 5.1 now asserts that the coefficient a(k, m, n) of xk ym zn in this expansion
is equal to the coefficient of xk ym zn in

(2x− y − z)k (− x +2y − z)m (− x− y +2z)n.

Using the binomial theorem this product is equal to
∑

r,s,t

(

k

r

)(

m

s

)(

n

t

)

xk−r ym−s zn−t (x− y − z)r (− x + y − z)s (− x− y + z)t,

which shows that in order to establish positivity of the a(k, m, n) it is sufficient to prove posi-
tivity of the coefficient of xr ys zt in

(x− y − z)r (− x+ y − z)s (−x− y + z)t.

By applying MacMahon’s master theorem 5.1 backwards we find that

det



I3−





1 − 1 − 1
− 1 1 − 1
− 1 − 1 1









x

y

z









−1

=
1

1− (x + y + z) +4 x y z
,

which once more reduces positivity of f to the positivity of g.
Increasing a diagonal element of the matrix A that appears in MacMahon’s theorem by 1 is
equivalent to applying the positivity preserving operation given in proposition 2.1 to the corre-
sponding rational function. The reason for mentioning MacMahon’s theorem here, is that one
can just see that starting with Szegö’s function f we can reduce to g by decreasing all diagonal
elements by 1.

6 Optimality

Kauers states that “it is easy to show that there can be no algorithm which for a given multi-
variate rational function decides whether all its series coefficients are positive”, see
[Kauers, 2007], whence we focus here on the reciprocals of certain symmetric polynomials. In
the 3-dimensional case we have the 4 elementary symmetric polynomials

1, x+ y + z, x y + y z + z x, x y z,

and if we further require that every variable appears at most linearly, the most general normal-
ized candidate for positivity is

ha,b(x, y, z)=
1

1− (x+ y + z)+ a (x y + y z + z x)+ b x y z
.

We ask for conditions on a, b such that ha,b has positive coefficients. First, we note that posi-
tivity of some ha,b implies positivity of ha′,b′ whenever a′ < a and b′ < b. This is a consequence
of the following general fact.
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Proposition 6.1. Let 1/p(x1, � , xr) be a positive rational function, and q(x1, � , xr) any poly-

nomial with non-negative coefficients. Then the rational function

1

p− q

is positive provided that it has no pole at the origin.

Proof. This follows from the geometric summation

1

p− q
=

1

p

∑

n>0

(

q

p

)n

. �

Positivity of Szegö’s function f(x, y, z) = h3/4,0(2x, 2y, 2z) now shows that if b = 0 then a 6 3/4
is sufficient for positivity, whereas positivity of g = h0,4 implies that if a = 0 then b 6 4 suffices.
Are these conditions optimal, that is are they necessary?

Proposition 6.2. Suppose that the rational function h0,b(x, y, z) is positive. Then b 6 4.

Proof. We expand h0,b(x, y, z) as

h0,b(x, y, z)=
1

1−x− y − z + b x y z
=
∑

n>0

(1− b x y)n

(1− x− y)n+1 zn.

Using
1

(1− x− y)n+1 =
∑

m>0

(

n + m

n

)

(x+ y)m,

we conclude that the coefficient of x yn zn in h0,b(x, y, z) is given by

(n + 1)
(

2n + 1
n

)

− b n
(

2n− 1
n

)

.

Positivity of h0,b then implies that

b <
2 (2n +1)

n

for all integers n > 0. �

We believe, supported by numerical evidence, that in fact both conditions are not only sufficient
but also necessary.

Conjecture 6.3. Suppose that the rational function ha,0(x, y, z) is positive. Then a 6 3/4.

Remark 6.4. As was the case in the proof of proposition 6.2 it seems that a 6 3/4 can be
deduced from just considering the coefficients of the form x yn zn in the expansion of ha,0.

The (conjectured) optimality of Szegö’s function f is quite remarkable in this context since
proposition 2.1 allows us to only conclude its positivity from the positivity of g but not vice
versa. Yet proposition 2.1 seems to still provide us with an optimal result.
More seems to be true. By remark 2.2 positivity of some ha,b implies positivity of ha′,b′ where

a′=
a + 2λ +λ2

(1+ λ)2
, b′=

b− 3λa− 3λ2−λ3

(1 + λ)3
,

and λ > 0. We conjecture that these parameters a′, b′ are optimal (in the sense that increasing
either of them will destroy positivity) whenever a, b are optimal. In particular, for the discussed
case a = 0 and b= 4 this reads as follows.

Conjecture 6.5. Let 0 6 a 6 1. The rational function ha,b has positive coefficients if and only if

b6 2− 3a +2(1− a)3/2.
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Remark 6.6. Note that we proved the if-part of this conjecture for a < 1. For a = 1 we get

h1,−1(x, y, z)=
1

(1− x)(1− y)(1− z)
which is obviously positive.

Example 6.7. We illustrate this conjecture for a = 1/2. While we know that ha,b has positive
coefficients for

b6
1

2
+

1

2
√ ≈ 1.207,

conjecture 6.5 claims that this is optimal. Indeed we find that for instance the Taylor coeffi-
cients up to order 20 are positive only if

b < 1.212.

The region of positivity as stated in conjecture 6.5 is shown in figure 6.1 with the points corre-
sponding to Szegö’s function f and g marked.

−1

1

2

3

4

bb

1

4

1

2

3

4
1

aa

Figure 6.1. Region of Positivity of ha,b

To further complete the picture, we show that ha,b can’t have positive coefficients for a > 1
regardless of b.

Proposition 6.8. Suppose that ha,b(x, y, z) is positive. Then a 6 1.

Proof. We expand ha,b(x, y, 0) as

ha,b(x, y, 0) =
1

1− x− y + a x y
=
∑

n>0

(1− a x)n

(1−x)n+1
yn,

and as in proposition 6.2 deduce that the coefficient of x yn in ha,b(x, y, z) is given by n + 1 −
n a. Positivity of ha,b thus implies that

a <
n + 1

n

for all positive integers n. �

What happens for a < 0? The coefficient of x y z in the expansion of ha,b(x, y, z) is 6(1 − a)− b.
Thus conjecture 6.5 does not hold whenever a 6 a0, where a0≈− 1.81451 is the unique real solu-
tion to

2− 3a0 + 2(1− a0)
3/2 =6(1− a0).

Numerical evidence suggests that for a 6 a0 the condition 6(1 − a) − b > 0 is also sufficient for
positivity, which we express in the following conjecture that attempts to complete the picture
provided by conjecture 6.5.
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Conjecture 6.9. The rational function ha,b has positive coefficients if and only if











b < 6(1− a)

b 6 2− 3a + 2(1− a)3/2

a 6 1

.

The following graphic 6.2 shows the region defined by the restrictions given in conjecture 6.9.

5

10

15

20

bb

−2 −1 1

aa

Figure 6.2. Extended Region of Positivity of ha,b

7 On a Conjecture of Kauers

The following was conjectured to be true in [Kauers, 2007].

Theorem 7.1. The rational function

1

1− (x + y + z)+
1

4
(x2 + y2 + z2)

is positive.

Proof. Clearly,
1

(1− x)2

has positive coefficents, and thus has

1

(1− x + y + z

2
)2

=
1

1− (x + y + z) +
1

2
(x y + y z + z x) +

1

4
(x2 + y2 + z2)

.

Proposition 6.1 now implies positivity of the function considered by Kauers. �
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