SOLUTION TO MONTHLY PROBLEM
 PROPOSED BY D. E. KNUTH

Tewodros Amdeberhan
Department of Mathematics, Temple University, Philadelphia PA 19122, USA
tewodros@euclid.math.temple.edu

Problem \#10568: [P] Let n be a nonnegative integer. The sequence defined by $x_{0}=n$ and $x_{k+1}=x_{k}-\left\lceil\sqrt{x}_{k}\right\rceil$ for $k \geq 0$ converges to 0 . Let $f(n)$ be the number of steps required; i.e. $x_{f(n)}=0$ but $x_{f(n)-1}>0$. Find a closed form for $f(n)$.

Solution: Consider the following partition of the positive integers into "intervals":
for each nonnegative integer m, define successively

$$
\left\{\left[a_{m}(k)+1, b_{m}(k)\right],\left[b_{m}(k)+1, a_{m}(k+1)\right]\right\}
$$

for $k=1,2, \ldots, 2^{m}-1$, and augmented by $\left[a_{m}\left(2^{m}\right)+1, b_{m}\left(2^{m}\right)\right]$; where

$$
a_{m}(k):=4^{m}+(2 k-3) 2^{m}+k(k-1), \quad \text { and } \quad b_{m}(k):=4^{m}+(2 k-2) 2^{m}+k^{2}
$$

Claim:

$$
f(n)=\left\{\begin{array}{cr}
2^{m+1}-m-2+2 k-2, & \text { if } \mathrm{n} \in\left[a_{m}(k)+1, b_{m}(k)\right] \\
2^{m+1}-m-2+2 k-1, & \text { if } \mathrm{n} \in\left[b_{m}(k)+1, a_{m}(k+1)\right]
\end{array}\right.
$$

To this end it suffices to verify the inequalities:

$$
\begin{equation*}
a_{m}(k) \leq b_{m}(k)-\left\lceil\sqrt{b}_{m}(k)\right\rceil<a_{m}(k)+1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{m}(k) \leq a_{m}(k+1)-\left\lceil\sqrt{a}_{m}(k+1)\right\rceil<b_{m}(k)+1 . \tag{2}
\end{equation*}
$$

These follow respectively from

$$
\begin{equation*}
2^{m}+k-1<\left\lceil\sqrt{b}_{m}(k)\right\rceil \leq 2^{m}+k \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
2^{m}+k-1<\left\lceil\sqrt{a}_{m}(k+1)\right\rceil \leq 2^{m}+k \tag{4}
\end{equation*}
$$

Then, the formula in the claim is a consequence of successive counting of the intervals.

References:

[P] P 10568, American Mathematical Monthly, (104) \#1, 1997.

