SOLUTION TO PROBLEM \#10744
 PROPOSED BY PETER LINDQUIST, AND ET. AL

Tewodros Amdeberhan
DeVry Institute, Mathematics
630 US Highway One, North Brunswick, NJ 08902 amdberhan@admin.nj.devry.edu

Proposed by Peter Lindquist, Norwegian Univ. of Sci. and Tech., Trondheim, Norway, and Jaak Peetre, Univ. of Lund, Lund, Sweden. Fix $p>0$, and define functions, $S(x), C(x)$ and $T(x)$ for sufficiently small x by

$$
x=\int_{0}^{S(x)} \frac{d t}{\left(1-t^{p}\right)^{\frac{p-1}{p}}}, \quad x=\int_{C(x)}^{1} \frac{d t}{\left(1-t^{p}\right)^{\frac{p-1}{p}}}, \quad x=\int_{0}^{T(x)} \frac{d t}{\left(1+t^{p}\right)^{\frac{2}{p}}} .
$$

Show that $S^{p}(x)+C^{p}(x)=1$ and that $T(x)=S(x) / C(x)$. The case $p=2$ yields the familiar trigonometric formulas.

Solution by T. Amdeberhan, DeVry Institute, North Brunswick, NJ. Assuming $x \geq 0$, we have $S(x), T(x) \geq 0$ and $C(x) \leq 1$. Since the integrands are positive and continuous, we are ensured of monotonicity, invertibility and differentiability. Moreover, we have

$$
\begin{array}{cc}
S^{\prime}(x)=\left(1-S^{p}(x)\right)^{\frac{p-1}{p}}, & S(0)=0 \\
-C^{\prime}(x)=\left(1-C^{p}(x)^{\frac{p-1}{p}},\right. & C(0)=1 \\
T^{\prime}(x)=\left(1+T^{p}(x)\right)^{\frac{2}{p}}, & T(0)=0 \tag{3}
\end{array}
$$

To verify the first assertion, it suffices to show that $y=\left(1-C^{p}\right)^{1 / p}$ satisfies the same 1 st order initial value problem (1), as $S(x)$. This follows from $y(0)=0$ and

$$
y^{\prime}=\frac{1}{p}\left(1-C^{p}\right)^{\frac{1-p}{p}}\left(p C^{p-1}\right)\left(-C^{\prime}\right)=\frac{1}{p}\left(1-C^{p}\right)^{\frac{1-p}{p}}\left(p C^{p-1}\right)\left(1-C^{p}\right)^{\frac{p-1}{p}}=C^{p-1}=\left(1-y^{p}\right)^{\frac{p-1}{p}}
$$

By uniqueness of solutions, we get $y(x)=S(x)$. To prove the second part of the assertion, note that $S^{\prime}(x)=C^{p-1}(x)$ and also $C^{\prime}(x)=-S^{p-1}(x)$. We want to show that $z=S / C$ meets the same IVP in (3) as does T. Since $z(0)=0$, and

$$
z^{\prime}=\left(\frac{S}{C}\right)^{\prime}=\frac{S^{\prime} C-C^{\prime} S}{C^{2}}=\frac{C^{p}+S^{p}}{C^{2}}=\frac{1}{C^{2}}, \quad\left(1+z^{p}\right)^{\frac{2}{p}}=\left(\frac{C^{p}+S^{p}}{C^{p}}\right)^{\frac{2}{p}}=\frac{1}{C^{2}}
$$

we conclude that $T=z=S / C$.

References:

[P] P \#10744, American Mathematical Monthly, (106) \#6, June-July 1999.

