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Proposed by Peter Lindquist, Norwegian Univ. of Sci. and Tech., Trondheim, Norway, and Jaak

Peetre, Univ. of Lund, Lund, Sweden. Fix p > 0, and de�ne functions, S(x), C(x) and T (x) for
suÆciently small x by
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Show that Sp(x) + Cp(x) = 1 and that T (x) = S(x)=C(x). The case p = 2 yields the familiar
trigonometric formulas.

Solution by T. Amdeberhan, DeVry Institute, North Brunswick, NJ. Assuming x � 0, we have
S(x); T (x) � 0 and C(x) � 1. Since the integrands are positive and continuous, we are ensured of
monotonicity, invertibility and di�erentiability. Moreover, we have

(1) S0(x) = (1� Sp(x))
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p ; S(0) = 0
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(3) T 0(x) = (1 + T p(x))
2

p ; T (0) = 0:

To verify the �rst assertion, it suÆces to show that y = (1 � Cp)1=p satis�es the same 1st order
initial value problem (1), as S(x). This follows from y(0) = 0 and
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By uniqueness of solutions, we get y(x) = S(x). To prove the second part of the assertion, note that
S0(x) = Cp�1(x) and also C0(x) = �Sp�1(x). We want to show that z = S=C meets the same IVP
in (3) as does T . Since z(0) = 0, and
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we conclude that T = z = S=C. �
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