SOLUTION TO PROBLEM \#11309

T. Amdeberhan and M. Joyce
tamdeber@tulane.edu mjoyce@math.tulane.edu

Proposed by Roman Witula and Damian Slota, Silesian University of Technology, Gliwice, Poland. Let γ and δ be real numbers satisfying $\sqrt{\gamma^{2}+\delta^{2}}<\frac{\pi}{2}$. Prove that $\cos (\gamma \sin x)>\sin (\delta \cos x)$ for all real x.

Solution by Tewodros Amdeberhan and Michael Joyce, Tulane Univesity, New Orleans, LA, USA. From the assumption, $|\gamma|,|\delta|<\frac{\pi}{2}$ and hence $|\gamma \sin x|<\frac{\pi}{2}$. So $\cos (\gamma \sin x)>0$. The inequality is then trivially satisfied whenever $\delta \cos x \leq 0$; if $\delta, \gamma \geq 0$, then this observation and the periodicity of sine and cosine allow us to prove the inequality on the interval $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$. But we may use the transformations $\delta \rightarrow-\delta, x \rightarrow \pi-x$ and $\gamma \rightarrow-\gamma, x \rightarrow 2 \pi-x$ to reduce to the case $\delta, \gamma \geq 0$. Furthermore, using $x \rightarrow-x$, we may in addition assume that $0 \leq x \leq \frac{\pi}{2}$.
Rewrite the claim as $\sin \left(\frac{\pi}{2}-\gamma \sin x\right)>\sin (\delta \cos x)$. Both arguments on the left and right-hand sides are in the interval between 0 and $\frac{\pi}{2}$. But, the sine function is 1 -to- 1 and increasing here. Thus the last assertion amounts to $\frac{\pi}{2}-\gamma \sin x>\delta \cos x$. On the other hand, using dot products and Cauchy-Schwartz:

$$
\gamma \sin x+\delta \cos x=(\gamma, \delta) \cdot(\sin x, \cos x) \leq \sqrt{\gamma^{2}+\delta^{2}}<\frac{\pi}{2}
$$

The proof is complete.

References:

[P] P \#11309, American Mathematical Monthly, August-September 2007.

