PROBLEM \#11597

AMS MONTHLY

Problem \#11597. Let $f(x)=x / \log (1-x)$. For $0<x<1$, show that

$$
\sum_{k=1}^{\infty} \frac{x^{k}(1-x)^{k}}{k!} f^{(k)}(x)=-\frac{x}{2} f(x)
$$

Proof. Recall the format of the Taylor series expansion of $f(y)$, at the number x, where the series converges.

$$
f(y)=\sum_{k=0}^{\infty} \frac{(y-x)^{k}}{k!} f^{(k)}(x)
$$

What should be y so that $y-x=x(1-x)$? This simply amounts to choosing $y=2 x-x^{2}$. The next question is, what is $f(y)$? Well, clearly

$$
f\left(2 x-x^{2}\right)=\frac{2 x-x^{2}}{\log \left[1-\left(2 x-x^{2}\right)\right]}=\frac{2 x-x^{2}}{\log \left[(1-x)^{2}\right]}=\frac{2 x-x^{2}}{2 \log (1-x)} .
$$

On the other hand, splitting the summand for $k=0$ results in

$$
\begin{aligned}
\sum_{k=0}^{\infty} \frac{(y-x)^{k}}{k!} f^{(k)}(x) & =\sum_{k=0}^{\infty} \frac{[x(1-x)]^{k}}{k!} f^{(k)}(x) \\
& =\frac{x}{\log (1-x)}+\sum_{k=1}^{\infty} \frac{x^{k}(1-x)^{k}}{k!} f^{(k)}(x)
\end{aligned}
$$

This says,

$$
\frac{2 x-x^{2}}{\log \left[(1-x)^{2}\right]}=\frac{x}{\log (1-x)}+\sum_{k=1}^{\infty} \frac{x^{k}(1-x)^{k}}{k!} f^{(k)}(x)
$$

In other words,

$$
\sum_{k=1}^{\infty} \frac{x^{k}(1-x)^{k}}{k!} f^{(k)}(x)=\frac{2 x-x^{2}}{\log \left[(1-x)^{2}\right]}-\frac{x}{\log (1-x)}=\frac{-x^{2}}{2 \log (1-x)}=-\frac{x}{2} f(x)
$$

as required.

