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Problem #11828. Proposed by Roberto Tauraso, Universita di Roma ”Tor Vergata,” Rome, Italy.
Let n be a positive integer, and let z be a complex number that is not a kth root of unity for any
k with 1 ≤ k ≤ n. Let S be the set of all lists (a1, . . . , an) of n nonnegative integers such that∑n
k=1 kak = n. Prove that
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Proof. Standard exponential generating function techniques (see e.g. [1, Eqn. (5.30)]) show a
result due to Touchard:
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where ci = ci(π) denotes the number cycles of length i in a permutation π. If π ∈ Sn then its cycle
type (a1, . . . , an) ` n is a partition. It’s also known that there are
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ak
such permutations,

and hence equation (1) takes the desired form (replacing uk = 1
1−zk )
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On the other hand,
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so that
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Now, the coefficient of tn in (3) is the generating function for partitions of N with largest part at
most n, which is

∏n
k=1

1
1−zk . The equality is clearly valid for |z| < 1, but as rational meromorphic

functions they must agree over C beside the poles. The proof follows. �
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