SOLUTION TO PROBLEM \#11828 OF THE AMERICAN MATHEMATICAL MONTHLY

Tewodros Amdeberhan \& Richard P. Stanley
TAMDEBER@tULANE.EDU RSTAN@MATH.MIT.EDU

Problem \#11828. Proposed by Roberto Tauraso, Universita di Roma "Tor Vergata," Rome, Italy. Let n be a positive integer, and let z be a complex number that is not a k th root of unity for any k with $1 \leq k \leq n$. Let S be the set of all lists $\left(a_{1}, \ldots, a_{n}\right)$ of n nonnegative integers such that $\sum_{k=1}^{n} k a_{k}=n$. Prove that

$$
\sum_{a \in S} \prod_{k=1}^{n} \frac{1}{a_{k}!k^{a_{k}}\left(1-z^{k}\right)^{a_{k}}}=\prod_{k=1}^{n} \frac{1}{1-z^{k}}
$$

Proof. Standard exponential generating function techniques (see e.g. [1, Eqn. (5.30)]) show a result due to Touchard:

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(\frac{1}{n!} \sum_{\pi \in S_{n}} u_{1}^{c_{1}} u_{2}^{c_{2}} \cdots u_{n}^{c_{n}}\right) t^{n}=e^{u_{1} \frac{t^{1}}{1}+u_{2} \frac{t^{2}}{2}+u_{3} \frac{t^{3}}{3}+\cdots} \tag{1}
\end{equation*}
$$

where $c_{i}=c_{i}(\pi)$ denotes the number cycles of length i in a permutation π. If $\pi \in S_{n}$ then its cycle type $\left(a_{1}, \ldots, a_{n}\right) \vdash n$ is a partition. It's also known that there are $\prod_{k=1}^{n} \frac{k}{a_{k}!k^{a_{k}}}$ such permutations, and hence equation (1) takes the desired form (replacing $u_{k}=\frac{1}{1-z^{k}}$)

$$
\sum_{n=0}^{\infty}\left(\sum_{a \vdash n} \prod_{k=1}^{n} \frac{1}{a_{k}!k^{a_{k}}\left(1-z^{k}\right)^{a_{k}}}\right) t^{n}=e^{\sum_{n=1}^{\infty} \frac{t^{n}}{n\left(1-z^{n}\right)}}
$$

On the other hand, $\sum_{n=1}^{\infty} \frac{t^{n}}{n\left(1-z^{n}\right)}=\sum_{n=1}^{\infty} \sum_{k=0}^{\infty} \frac{t^{n} z^{n k}}{n}=\sum_{k=0}^{\infty} \sum_{n=1}^{\infty} \frac{\left(t z^{k}\right)^{n}}{n}=-\sum_{k=0}^{\infty} \log \left(1-t z^{k}\right)$ so that

$$
\begin{equation*}
e^{\sum_{n=1}^{\infty} \frac{t^{n}}{n\left(1-z^{n}\right)}}=e^{-\sum_{k=0}^{\infty} \log \left(1-t z^{k}\right)}=\prod_{k=0}^{\infty} \frac{1}{1-t z^{k}} \tag{3}
\end{equation*}
$$

Now, the coefficient of t^{n} in (3) is the generating function for partitions of N with largest part at most n, which is $\prod_{k=1}^{n} \frac{1}{1-z^{k}}$. The equality is clearly valid for $|z|<1$, but as rational meromorphic functions they must agree over \mathbb{C} beside the poles. The proof follows.

References

[1] R P Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge 62 (1999).

