SOLUTION TO PROBLEM \#11837 OF THE AMERICAN MATHEMATICAL MONTHLY

Tewodros Amdeberhan \& Victor H. Moll
TAMDEBER@TULANE.EDU VHM@TULANE.EDU

Problem \#11837. Proposed by Iosif Pinelis, Michigan Technological University, Houghton, MI. Let $a_{0}=1$, and for $n \geq 0$ let $a_{n+1}=a_{n}+e^{-a_{n}}$. Let $b_{n}=a_{n}-\log n$. For $n \geq 0$, show that $0<b_{n+1}<b_{n}$ and also show that $\lim _{n \rightarrow \infty} b_{n}=0$.
Proof. Solution by Tewodros Amdeberhan and Victor H. Moll, Tulane University, USA. Obviously $a_{n} \geq 1$ is strictly increasing (think of $f(x)=x+e^{-x}$) and its limit can not be finite (else, the recurrence leads to a contradiction). So, $\lim _{n \rightarrow \infty} a_{n}=\infty$. Define the sequence $c_{n}=e^{a_{n}}$ whose limit is also ∞. Now, consider the difference

$$
c_{n+1}-c_{n}=e^{a_{n}+e^{-a_{n}}}-e^{a_{n}}=e^{a_{n}}\left(e^{e^{-a_{n}}}-1\right)=c_{n}\left(e^{\frac{1}{c_{n}}}-1\right)=\frac{e^{\frac{1}{c_{n}}}-1}{\frac{1}{c_{n}}}
$$

It is now evident that the sequence $d_{n+1}:=c_{n+1}-c_{n}$ satisfies: (1) it is decreasing (since $\frac{e^{x}-1}{x}$ is increasing and $\frac{1}{c_{n}}$ is decreasing); (2) its limit is 1 (think of $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$). Because of (2) and by Cesaro's Mean: $\lim _{n \rightarrow \infty} \frac{c_{n}}{n}=1$. That means,

$$
\lim _{n \rightarrow \infty} b_{n}=\lim _{n \rightarrow \infty}\left(a_{n}-\log n\right)=\lim _{n \rightarrow \infty} \log \left(\frac{c_{n}}{n}\right)=0
$$

From property (1), the average $\frac{c_{n}}{n}$ of d_{n} is strictly decreasing hence so is $b_{n}=\log \left(\frac{c_{n}}{n}\right)$. Next, proceed with a left endpoint Riemann sum approximation over the partitions [a_{k}, a_{k+1}] (for $0 \leq k \leq n-1$) so that

$$
e^{a_{n}}-e=\int_{1}^{a_{n}} e^{x} d x>\sum_{k=0}^{n-1}\left(a_{k+1}-a_{k}\right) e^{a_{k}}=\sum_{k=0}^{n-1} 1=n
$$

which implies that $a_{n}>\log (n+e)>\log n$ or $b_{n}=a_{n}-\log n>0$. The proof follows.

