SOLUTION TO PROBLEM #11837 OF THE AMERICAN MATHEMATICAL MONTHLY

TEWODROS AMDEBERHAN & VICTOR H. MOLL TAMDEBER@TULANE.EDU VHM@TULANE.EDU

Problem #11837. Proposed by Iosif Pinelis, Michigan Technological University, Houghton, MI. Let $a_0 = 1$, and for $n \ge 0$ let $a_{n+1} = a_n + e^{-a_n}$. Let $b_n = a_n - \log n$. For $n \ge 0$, show that $0 < b_{n+1} < b_n$ and also show that $\lim_{n\to\infty} b_n = 0$.

Proof. Solution by Tewodros Amdeberhan and Victor H. Moll, Tulane University, USA. Obviously $a_n \geq 1$ is strictly increasing (think of $f(x) = x + e^{-x}$) and its limit can not be finite (else, the recurrence leads to a contradiction). So, $\lim_{n\to\infty} a_n = \infty$. Define the sequence $c_n = e^{a_n}$ whose limit is also ∞ . Now, consider the difference

$$c_{n+1} - c_n = e^{a_n + e^{-a_n}} - e^{a_n} = e^{a_n} \left(e^{e^{-a_n}} - 1 \right) = c_n \left(e^{\frac{1}{c_n}} - 1 \right) = \frac{e^{\frac{1}{c_n}} - 1}{\frac{1}{c_n}}.$$

It is now evident that the sequence $d_{n+1} := c_{n+1} - c_n$ satisfies: (1) it is decreasing (since $\frac{e^x - 1}{x}$ is increasing and $\frac{1}{c_n}$ is decreasing); (2) its limit is 1 (think of $\lim_{x\to 0} \frac{e^x - 1}{x} = 1$). Because of (2) and by Cesaro's Mean: $\lim_{n\to\infty} \frac{c_n}{n} = 1$. That means,

$$\lim_{n \to \infty} b_n = \lim_{n \to \infty} (a_n - \log n) = \lim_{n \to \infty} \log\left(\frac{c_n}{n}\right) = 0.$$

From property (1), the average $\frac{c_n}{n}$ of d_n is strictly decreasing hence so is $b_n = \log\left(\frac{c_n}{n}\right)$. Next, proceed with a left endpoint Riemann sum approximation over the partitions $[a_k, a_{k+1}]$ (for $0 \le k \le n-1$) so that

$$e^{a_n} - e = \int_1^{a_n} e^x \, dx > \sum_{k=0}^{n-1} (a_{k+1} - a_k) e^{a_k} = \sum_{k=0}^{n-1} 1 = n$$

which implies that $a_n > \log(n+e) > \log n$ or $b_n = a_n - \log n > 0$. The proof follows. \Box

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!\mathrm{E}}\!X$