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Problem #11837. Proposed by Iosif Pinelis, Michigan Technological University, Houghton, MI. Let
a0 = 1, and for n ≥ 0 let an+1 = an +e−an . Let bn = an− log n. For n ≥ 0, show that 0 < bn+1 < bn
and also show that limn→∞ bn = 0.

Proof. Solution by Tewodros Amdeberhan and Victor H. Moll, Tulane University, USA. Obviously
an ≥ 1 is strictly increasing (think of f(x) = x + e−x) and its limit can not be finite (else, the
recurrence leads to a contradiction). So, limn→∞ an =∞. Define the sequence cn = ean whose limit
is also ∞. Now, consider the difference
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It is now evident that the sequence dn+1 := cn+1 − cn satisfies: (1) it is decreasing (since ex−1
x is

increasing and 1
cn

is decreasing); (2) its limit is 1 (think of limx→0
ex−1
x = 1). Because of (2) and by

Cesaro’s Mean: limn→∞
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n = 1. That means,
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From property (1), the average cn
n of dn is strictly decreasing hence so is bn = log

(
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)
. Next, proceed

with a left endpoint Riemann sum approximation over the partitions [ak, ak+1] (for 0 ≤ k ≤ n− 1)
so that
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ex dx >
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which implies that an > log(n + e) > log n or bn = an − log n > 0. The proof follows. �
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