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Problem #11847. Proposed by Mihaly Bencze, Brasov, Romania. Prove that for n ≥ 1,
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Proof. Solution by Tewodros Amdeberhan, Tulane University, USA. Since
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3 , it suffices to show the point-wise (term-by-term) estimates
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Define f(x) = x√
1+x
− log(1 +x) and g(x) = log(1 +x)− x

1+x/2 . These are strictly increaasing, since
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provided x > 0. Therefore, f(x) > f(0) = 0 and g(x) > g(0) = 0. Plugging in x = 1
k (for k ≥ 1)

implies f( 1
k ) > 0 and g( 1

k ) > 0. The proof follows. �
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