SOLUTION TO PROBLEM \#11847 OF THE AMERICAN MATHEMATICAL MONTHLY

Tewodros Amdeberhan
TAMDEBER@TULANE.EDU

Problem \#11847. Proposed by Mihaly Bencze, Brasov, Romania. Prove that for $n \geq 1$,

$$
\frac{n(n+1)(n+2)}{3}<\sum_{k=1}^{n} \frac{1}{\log ^{2}(1+1 / k)}<\frac{n}{4}+\frac{n(n+1)(n+2)}{3}
$$

Proof. Solution by Tewodros Amdeberhan, Tulane University, USA. Since $\sum_{k=1}^{n} \frac{1}{4}=\frac{n}{4}$ and $\sum_{k=1}^{n} k(k+1)=\frac{n(n+1)(n+2)}{3}$, it suffices to show the point-wise (term-by-term) estimates $k(k+1)<\frac{1}{\log ^{2}(1+1 / k)}<\frac{1}{4}+k(k+1)=(k+1 / 2)^{2}$, equivalently $\frac{1 / k}{\sqrt{1+1 / k}}>\log (1+1 / k)>\frac{1 / k}{1+k / 2}$. Define $f(x)=\frac{x}{\sqrt{1+x}}-\log (1+x)$ and $g(x)=\log (1+x)-\frac{x}{1+x / 2}$. These are strictly increaasing, since

$$
f^{\prime}(x)=\frac{\sqrt{x^{2}+4 x+4}-\sqrt{4 x+4}}{2(1+x)^{3 / 2}}>0 \quad \text { and } \quad g^{\prime}(x)=\frac{x^{2}}{(1+x)(2+x)^{2}}>0
$$

provided $x>0$. Therefore, $f(x)>f(0)=0$ and $g(x)>g(0)=0$. Plugging in $x=\frac{1}{k}$ (for $k \geq 1$) implies $f\left(\frac{1}{k}\right)>0$ and $g\left(\frac{1}{k}\right)>0$. The proof follows.

