SOLUTION TO PROBLEM \#11850 OF THE AMERICAN MATHEMATICAL MONTHLY

Tewodros Amdeberhan
TAMDEBER@TULANE.EDU

Problem \#11850. Proposed by Zafar Ahmed, Bhabha Atomic Research Center, Mumbai, India. Let A_{n} be the function given by

$$
A_{n}(x)=\sqrt{\frac{2}{\pi}} \frac{1}{n!}\left(1+x^{2}\right)^{n / 2} \frac{d^{n}}{d x^{n}}\left(\frac{1}{1+x^{2}}\right)
$$

Prove that for nonnegative integers m and $n, \int_{-\infty}^{\infty} A_{m}(x) A_{n}(x) d x=\delta(m, n)$, where $\delta(m, n)=1$ if $m=n$, and otherwise $\delta(m, n)=0$.
Proof. Solution by Tewodros Amdeberhan, Tulane University, and Hade Kilete-Seleste, USA. Let $f(x)=\frac{1}{1+x^{2}}$ and denote $D=\frac{d}{d x}$. The following can be proved by induction:

$$
\begin{aligned}
& D^{n} f(x)=-f(x)\left[2 n x D^{n-1} f(x)+n(n-1) D^{n-2} f(x)\right] \\
& D^{n} f(x)=n!\sum_{k=0}^{\lfloor n / 2\rfloor}(-2)^{n-k} 2^{-k}\binom{n-k}{k} x^{n-2 k} f^{n+1-k} \\
& \frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\cos t)^{2}(\sin t)^{2 n} d t=\frac{C(n)}{2^{2 n}} \quad \text { and } \quad \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\cos t)^{2}(\sin t)^{2 n+1} d t=0
\end{aligned}
$$

where $C(n)=\frac{1}{n+1}\binom{2 n}{n}$ are the Catalan numbers. Now, the substitution $x=\tan t$ leads to

$$
\begin{aligned}
\int_{\mathbb{R}} A_{m}(x) A_{n}(x) d x & =\frac{2}{\pi} \sum_{j, k \geq 0}(-2)^{m+n-j-k} 2^{-j-k}\binom{m-j}{j}\binom{n-k}{k} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}(\cos t)^{2}(\sin t)^{m+n-2 k-2 j} d t \\
& =\sum_{j, k \geq 0}(-1)^{j+k}\binom{m-j}{j}\binom{n-k}{k} C\left(\frac{m+n}{2}-j-k\right) ;
\end{aligned}
$$

where m and n are forcibly of the same parity, else the integral is 0 . Zeilberger's algorithm generates

$$
\sum_{j, k \geq 0}=\sum_{j=0}^{\lfloor n / 2\rfloor}(-1)^{j}\binom{m-j}{j} \frac{n+1}{\frac{m+n}{2}-j+1}\binom{m-2 j}{\frac{m+n}{2}-j}
$$

Observe that $\binom{m-2 j}{\frac{m+n}{2}-j}=0$ unless $j=0$ and $m=n$, in which case $\int_{\mathbb{R}} A_{m}(x) A_{m}(x) d x=\sum_{j, k \geq 0}=1$. The proof is complete.

