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Problem #11850. Proposed by Zafar Ahmed, Bhabha Atomic Research Center, Mumbai, India.
Let An be the function given by

An(x) =

√
2

π
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n!
(1 + x2)n/2

dn

dxn

(
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1 + x2

)
.

Prove that for nonnegative integers m and n,
∫∞
−∞Am(x)An(x)dx = δ(m,n), where δ(m,n) = 1 if

m = n, and otherwise δ(m,n) = 0.

Proof. Solution by Tewodros Amdeberhan, Tulane University, and Hade Kilete-Seleste, USA. Let
f(x) = 1

1+x2 and denote D = d
dx . The following can be proved by induction:

Dnf(x) = −f(x)
[
2nxDn−1f(x) + n(n− 1)Dn−2f(x)

]
,
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∫ π
2

−π2
(cos t)2(sin t)2ndt =
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22n
and
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where C(n) = 1
n+1

(
2n
n

)
are the Catalan numbers. Now, the substitution x = tan t leads to

∫
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where m and n are forcibly of the same parity, else the integral is 0. Zeilberger’s algorithm generates

∑
j,k≥0

=
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Observe that
( m−2j
m+n

2 −j

)
= 0 unless j = 0 and m = n, in which case

∫
RAm(x)Am(x)dx =

∑
j,k≥0 = 1.

The proof is complete. �
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