SOLUTION TO PROBLEM \#11872 OF THE AMERICAN MATHEMATICAL MONTHLY

Tewodros Amdeberhan
TAMDEBER@TULANE.EDU

Problem \#11872. Proposed by Phu Cuong Le Van, College of Education, Hue, Vietnam. Let f be a continuous function from $[0,1]$ to \mathbb{R} such that $\int_{0}^{1} f(x) d x=0$. Prove that for each positive integers there exists $c \in(0,1)$ such that

$$
n \int_{0}^{c} f(x) d x=c^{n+1} f(c)
$$

Proof. Solution by Tewodros Amdeberhan, Tulane University, USA. First, we show that if g : $[0, b] \rightarrow \mathbb{R}$ is continuous and $\int_{0}^{b} g(x) d x=0$ then $\int_{0}^{c} x g(x) d x=0$ for some $c \in(0, b)$. Suppose not. Since $A(t):=\int_{0}^{t} x g(x) d x$ is continuous, either $A(t)>0$ or $A(t)<0$ for all $t \in(0, b)$. WLOG assume $A(t)>0$. Denote $B(t)=\int_{0}^{t} g(x) d x$. Writing $x g(x)=(x B(x))^{\prime}-B(x)=B(x)+x g(x)-B(x)$, we obtain $A(t)=t B(t)-\int_{0}^{t} B(x) d x>0$ for all $t \in(0, b)$. By a limiting process, $b B(b)-\int_{0}^{b} B(x) d x \geq 0$ or $\int_{0}^{b} B(x) d x \leq 0$ (since $\left.B(b)=0\right)$. Define $h:[0, b] \rightarrow \mathbb{R}$ continuous, and differentiable in $(0, b)$, by

$$
h(t)=\left\{\begin{array}{cc}
\frac{1}{t} \int_{0}^{t} B(x) d x & \text { if } t \neq 0 \\
0 & \text { if } t=0
\end{array}\right.
$$

Then, $h^{\prime}(t)=\frac{1}{t^{2}}\left(t B(t)-\int_{0}^{t} B(x) d x\right)>0$ throughout ($0, b$) (see above). By the Mean Value Theorem, $h(b)-h(0)=h^{\prime}(a)(b-0)>0$ for some $a \in(0, b)$. It follows that $h(b)=\frac{1}{b} \int_{0}^{b} B(x) d x>0$, which is a contradiction. Therefore, there exists $c \in(0, b)$ such that $A(c)=\int_{0}^{c} x g(x) d x=0$.
Apply this result to $g(x)=f(x)$ (with $b=1$) to get $\int_{0}^{c_{1}} x f(x) d x=0$, then to $g(x)=x f(x)$ (with $b=c_{1}$) to obtain $\int_{0}^{c_{2}} x^{2} f(x) d x=0$, and so on. Hence $\int_{0}^{c_{n}} x^{n} f(x) d x=0$ for some $c_{n} \in(0,1)$. Let

$$
E(t)=\left\{\begin{array}{cl}
\frac{1}{t^{n}} \int_{0}^{t} x^{n} f(x) d x & \text { if } t \neq 0 \\
0 & \text { if } t=0
\end{array}\right.
$$

The function E is continuous on $\left[0, c_{n}\right]$, differentiable in $\left(0, c_{n}\right)$ and $E(0)=E\left(c_{n}\right)=0$. By Rolle's Theorem, there exists $\eta_{n} \in\left(0, c_{n}\right)$ such that $0=E^{\prime}\left(\eta_{n}\right)=\frac{-n}{\eta_{n}^{n+1}} \int_{0}^{\eta_{n}} x^{n} f(x) d x+f\left(\eta_{n}\right)$. That means,

$$
n \int_{0}^{\eta_{n}} x^{n} f(x) d x=\eta_{n}^{n+1} f\left(\eta_{n}\right)
$$

