SOLUTION TO PROBLEM #11875 OF THE AMERICAN MATHEMATICAL MONTHLY

TEWODROS AMDEBERHAN TAMDEBER@TULANE.EDU

Problem #11875. Proposed by D. M. Batinetu-Girugiu and N. Stanciu, Romania. Let $f_n = (1 + 1/n)^n ((2n - 1)!!L_n)^{1/n}$. Find $\lim_{n\to\infty} (f_{n+1} - f_n)$ where L_n denotes the *n*th Lucas number (given by $L_0 = 2, L_1 = 1$, and by $L_n = L_{n-1} + L_{n-2}$ for $n \ge 2$).

Solution by Tewodros Amdeberhan, Tulane University, LA, USA. Denote $a_n = (1 + 1/n)^n$ and $b_n = ((2n-1)!!L_n)^{1/n}$ so that $f_{n+1} - f_n = a_{n+1}(b_{n+1} - b_n) + \frac{b_n}{n}(a_{n+1} - a_n)n$. We work out individual limits: (1) $\lim a_{n+1} = e$; (2) equating the limits from the Root and Ratio tests, results in $0 \leq \lim \frac{n}{b_n} = \lim \left(\frac{n^n}{(2n-1)!!L_n}\right)^{1/n} = \lim \frac{(n+1)^{n+1}}{(2n+1)!!L_{n+1}} \frac{(2n-1)!!L_n}{n^n} = \lim \frac{n+1}{2n+1} (1 + \frac{1}{n})^n \frac{L_n}{L_{n+1}} = \frac{e}{1+\sqrt{5}} < 1$; (3) let $c_n = \frac{b_{n+1}}{b_n}$ so that $b_{n+1} - b_n = \frac{b_n}{n}(c_n-1)n = \frac{b_n}{n} \left(\frac{c_n-1}{\log c_n}\right) \log c_n^n$; (4) $\lim c_n = \lim \frac{b_{n+1}}{n+1} \frac{n}{b_n} \frac{n+1}{n} = 1$ from (2) above, hence based on $\lim_{x\to 1} \frac{x-1}{\log x} = \lim_{x\to 1} \frac{1}{\frac{1}{x}} = 1$ (L'Höpital's) we've $\lim_{n\to\infty} \frac{c_n-1}{\log c_n} = 1$. If $d_n = (2n-1)!!L_n$ then $\lim c_n^n = \lim \frac{b_{n+1}}{b_{n+1}^n} = \lim \frac{d_{n+1}}{nd_n} \frac{d_{n+1}}{b_{n+1}} = \lim \frac{(2n+1)!!L_{n+1}}{n(2n-1)!!L_n} \lim \frac{n+1}{b_{n+1}} = \lim \frac{(2n+1)!!L_{n+1}}{n(2n-1)!!L_n} \lim \frac{n+1}{b_{n+1}} = \lim \frac{(2n+1)!L_{n+1}}{n(2n-1)!!L_n} \lim \frac{n+1}{b_{n+1}} = \frac{(1+\sqrt{5})}{e} \in (5)$ let $g_n = \frac{a_{n+1}}{a_n}$ and rewrite $(a_{n+1} - a_n)n = a_n \frac{g_n-1}{\log g_n} \log g_n^n$. Using $\lim a_n = e$ and $\lim g_n = 1$, we argue as in (3) above to get $\lim \frac{g_n-1}{\log g_n} = 1$. Clearly, $\log g_n^n = \frac{n}{n+1} \frac{\log(1+\frac{1}{n+1})}{\frac{1}{n+1}} - \frac{n^2}{(n+1)^2} \frac{\log(1-\frac{1}{(n+1)^2}}{\frac{1}{(n+1)^2}}}$ and hence $\lim g_n^n = 0$ due to $\lim_{x\to 0} \frac{\log(1+x)}{x} = 1$ (L'Höpital's). We conclude $\lim(a_{n+1} - a_n)n = 0$. Combining all these evaluations, the required limit becomes

$$\lim_{n \to \infty} (f_{n+1} - f_n) = \lim_{n \to \infty} a_{n+1} \cdot \lim_{n \to \infty} (b_{n+1} - b_n) + \lim_{n \to \infty} \frac{b_n}{n} \cdot \lim_{n \to \infty} (a_{n+1} - a_n)n = 1 + \sqrt{5}.$$

Typeset by $\mathcal{A}_{\mathcal{M}} \mathcal{S}\text{-}T_{\mathrm{E}} X$