SOLUTION TO PROBLEM \#11875 OF THE AMERICAN MATHEMATICAL MONTHLY

Tewodros Amdeberhan
TAMDEBER@TULANE.EDU

Problem \#11875. Proposed by D. M. Batinetu-Girugiu and N. Stanciu, Romania. Let $f_{n}=$ $(1+1 / n)^{n}\left((2 n-1)!!L_{n}\right)^{1 / n}$. Find $\lim _{n \rightarrow \infty}\left(f_{n+1}-f_{n}\right)$ where L_{n} denotes the nth Lucas number (given by $L_{0}=2, L_{1}=1$, and by $L_{n}=L_{n-1}+L_{n-2}$ for $n \geq 2$).
Solution by Tewodros Amdeberhan, Tulane University, LA, USA. Denote $a_{n}=(1+1 / n)^{n}$ and $b_{n}=\left((2 n-1)!!L_{n}\right)^{1 / n}$ so that $f_{n+1}-f_{n}=a_{n+1}\left(b_{n+1}-b_{n}\right)+\frac{b_{n}}{n}\left(a_{n+1}-a_{n}\right) n$. We work out individual limits: (1) $\lim a_{n+1}=e ;(\mathbf{2})$ equating the limits from the Root and Ratio tests, results in $0 \leq \lim \frac{n}{b_{n}}=\lim \left(\frac{n^{n}}{(2 n-1)!!L_{n}}\right)^{1 / n}=\lim \frac{(n+1)^{n+1}}{(2 n+1)!!L_{n+1}} \frac{(2 n-1)!!L_{n}}{n^{n}}=\lim \frac{n+1}{2 n+1}\left(1+\frac{1}{n}\right)^{n} \frac{L_{n}}{L_{n+1}}=\frac{e}{1+\sqrt{5}}<1$; (3) let $c_{n}=\frac{b_{n+1}}{b_{n}}$ so that $b_{n+1}-b_{n}=\frac{b_{n}}{n}\left(c_{n}-1\right) n=\frac{b_{n}}{n}\left(\frac{c_{n}-1}{\log c_{n}}\right) \log c_{n}^{n}$; (4) $\lim c_{n}=\lim \frac{b_{n+1}}{n+1} \frac{n}{b_{n}} \frac{n+1}{n}=1$ from (2) above, hence based on $\lim _{x \rightarrow 1} \frac{x-1}{\log x}=\lim _{x \rightarrow 1} \frac{1}{\frac{1}{x}}=1$ (L'Höpital's) we've $\lim _{n \rightarrow \infty} \frac{c_{n}-1}{\log c_{n}}=1$. If $d_{n}=(2 n-1)!!L_{n}$ then $\lim c_{n}^{n}=\lim \frac{b_{n+1}^{n+1}}{b_{n}^{n} b_{n+1}}=\lim \frac{d_{n+1}}{n d_{n}} \frac{n+1}{b_{n+1}} \frac{n}{n+1}=\lim \frac{(2 n+1)!!L_{n+1}}{n(2 n-1)!!L_{n}} \lim \frac{n+1}{b_{n+1}}=$ $\lim \frac{(2 n+1)}{n} \frac{L_{n+1}}{L_{n}} \lim \frac{n+1}{b_{n+1}}=(1+\sqrt{5}) \frac{e}{1+\sqrt{5}}=e$, from (2) above. By continuity, $\lim \log c_{n}^{n}=1$ which implies $\lim \left(b_{n+1}-b_{n}\right)=\frac{1+\sqrt{5}}{e} ;(5)$ let $g_{n}=\frac{a_{n+1}}{a_{n}}$ and rewrite $\left(a_{n+1}-a_{n}\right) n=a_{n} \frac{g_{n}-1}{\log g_{n}} \log g_{n}^{n}$. Using $\lim a_{n}=e$ and $\lim g_{n}=1$, we argue as in (3) above to get $\lim \frac{g_{n}-1}{\log g_{n}}=1$. Clearly, $\log g_{n}^{n}=$ $\frac{n}{n+1} \frac{\log \left(1+\frac{1}{n+1}\right)}{\frac{1}{n+1}}-\frac{n^{2}}{(n+1)^{2}} \frac{\log \left(1-\frac{1}{(n+1)^{2}}\right)}{\frac{-1}{(n+1)^{2}}}$ and hence $\lim g_{n}^{n}=0$ due to $\lim _{x \rightarrow 0} \frac{\log (1+x)}{x}=1$ (L'Höpital's). We conclude $\lim \left(a_{n+1}-a_{n}\right) n=0$. Combining all these evaluations, the required limit becomes

$$
\lim _{n \rightarrow \infty}\left(f_{n+1}-f_{n}\right)=\lim _{n \rightarrow \infty} a_{n+1} \cdot \lim _{n \rightarrow \infty}\left(b_{n+1}-b_{n}\right)+\lim _{n \rightarrow \infty} \frac{b_{n}}{n} \cdot \lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right) n=1+\sqrt{5}
$$

