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Problem #11875. Proposed by D. M. Batinetu-Girugiu and N. Stanciu, Romania. Let fn =
(1 + 1/n)n((2n − 1)!!Ln)

1/n. Find limn→∞(fn+1 − fn) where Ln denotes the nth Lucas number
(given by L0 = 2, L1 = 1, and by Ln = Ln−1 + Ln−2 for n ≥ 2).

Solution by Tewodros Amdeberhan, Tulane University, LA, USA. Denote an = (1 + 1/n)n and
bn = ((2n − 1)!!Ln)

1/n so that fn+1 − fn = an+1(bn+1 − bn) +
bn
n (an+1 − an)n. We work out

individual limits: (111) lim an+1 = e; (222) equating the limits from the Root and Ratio tests, results in
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= e, from (222) above. By continuity, lim log cnn = 1 which
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and rewrite (an+1 − an)n = an

gn−1
log gn

log gnn .

Using lim an = e and lim gn = 1, we argue as in (333) above to get lim gn−1
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= 1. Clearly, log gnn =
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and hence lim gnn = 0 due to limx→0
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x = 1 (L’Höpital’s).

We conclude lim(an+1 − an)n = 0. Combining all these evaluations, the required limit becomes
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