SOLUTION TO PROBLEM \#11876 OF THE AMERICAN MATHEMATICAL MONTHLY

Tewodros Amdeberhan
TAMDEBER@TULANE.EDU

Problem \#11876. Proposed by A. Cibulis, Latvia. Let a, b be the roots of $x^{2}+x+\frac{1}{2}=0$. Find

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}\left(a^{n}+b^{n}\right)}{n+2}
$$

Solution by Tewodros Amdeberhan, Tulane University, LA, USA. Notice that $a b=\frac{1}{2}$ and $a+b=-1$. In fact, let $a=\frac{-1+i}{2}$ and $b=\frac{-1-i}{2}$ where $i=\sqrt{-1}$. Since $|a|=|b|=\frac{1}{\sqrt{2}}$. The series expansions $\sum_{n \geq 0} a^{n} z^{n}=\frac{1}{1-a z}$ and $\sum_{n \geq 0} b^{n} z^{n}=\frac{1}{1-b z}$ are valid for $|z|<\sqrt{2}$. In this domain, we may add and safely integrate (using path-independence of analytic functions)

$$
\begin{aligned}
\sum_{n \geq 0} \frac{\left(a^{n}+b^{n}\right)(-1)^{n+2}}{n+2} & =\int_{0}^{-1} \sum_{n \geq 0}\left(a^{n}+b^{n}\right) z^{n+1} d z=\int_{0}^{-1}\left(\frac{z}{1-a z}+\frac{z}{1-b z}\right) d z \\
& =\int_{0}^{-1}\left(2 z-\frac{(a+b) z^{2}}{a b z^{2}-(a+b) z+1}\right) d z=\int_{0}^{-1}\left(\frac{2 z+z^{2}}{\frac{1}{2} z^{2}+z+1}\right) d z \\
& =[2 z-4 \arctan (z+1)]_{0}^{-1}=-2+\pi
\end{aligned}
$$

That means, the required sum is $\sum_{n \geq 1} \frac{(-1)^{n}\left(a^{n}+b^{n}\right)}{n+2}=-1+\sum_{n \geq 0} \frac{(-1)^{n}\left(a^{n}+b^{n}\right)}{n+2}=\pi-3$.

