SOLUTION TO PROBLEM \#11884 OF THE AMERICAN MATHEMATICAL MONTHLY

Problem \#11884. Proposed by C. Lupu, University of Pittsburgh, Pittsburgh, PA and T. Lupu, Decebal High School, Constanta, Romania. Let f be a real-vlaued function on $[0,1]$ such that f and its first two derivatives are continuous. Prove that if $f\left(\frac{1}{2}\right)=0$ then

$$
\int_{0}^{1}\left(f^{\prime \prime}(x)\right)^{2} d x \geq 320\left(\int_{0}^{1} f(x) d x\right)^{2}
$$

Solution by Tewodros Amdeberhan, Tulane University, LA, USA. Apply integration by parts: once in the form of $u=x-x^{2}, v^{\prime}=f^{\prime \prime}$ and then followed by in the form of $u=1-2 x, v^{\prime}=f^{\prime}$ to gather $\int_{0}^{1}\left(x-x^{2}\right) f^{\prime \prime}(x) d x=f(1)+f(0)-2 \int_{0}^{1} f(x) d x$. On the other hand, from the Euler-Maclaurin Formula (applied to the function $h(x)=f\left(\frac{x}{2}\right)$ over [0, 2]), we obtain

$$
f(0)+f(1 / 2)=2 \int_{0}^{1} f(x) d x-\frac{f(1)-f(0)}{2}+\frac{f^{\prime}(1)-f^{\prime}(0)}{24}-\frac{1}{4} \int_{0}^{1} B_{2}(\{2 x\}) f^{\prime \prime}(x) d x
$$

where $\{y\}$ denotes the fractional part of $y \in \mathbb{R}$ and $B_{2}(y)=y^{2}-y+\frac{1}{6}$ is the $2^{\text {nd }}$ Bernoulli polynomial. Using $\int_{0}^{1} f^{\prime \prime} d x=f^{\prime}(1)-f^{\prime}(0)$, the assumption $f\left(\frac{1}{2}\right)=0$ and above-noted identity, we arrive at

$$
\begin{aligned}
\int_{0}^{1} f d x & =\frac{f(1)+f(0)}{4}+\frac{1}{8} \int_{0}^{1}\left(B_{2}(\{2 x\})-\frac{1}{6}\right) f^{\prime \prime}(x) d x \\
& =\frac{1}{2} \int_{0}^{1} f d x+\frac{1}{4} \int_{0}^{1}\left(x-x^{2}\right) f^{\prime \prime} d x++\frac{1}{8} \int_{0}^{1}\left(B_{2}(\{2 x\})-\frac{1}{6}\right) f^{\prime \prime}(x) d x
\end{aligned}
$$

That means, $\int_{0}^{1} f d x=\frac{1}{4} \int_{0}^{1}\left(\{2 x\}^{2}-\{2 x\}+2 x-2 x^{2}\right) f^{\prime \prime}(x) d x$. By Cauchy-Schwartz inequality, we have $\left(\int_{0}^{1} f d x\right)^{2} \leq \frac{1}{16} \int_{0}^{1}\left(\{2 x\}^{2}-\{2 x\}+2 x-2 x^{2}\right)^{2} d x \cdot \int_{0}^{1}\left(f^{\prime \prime}\right)^{2} d x=\frac{1}{320} \int_{0}^{1}\left(f^{\prime \prime}\right)^{2} d x$ since

$$
\begin{aligned}
\int_{0}^{1}\left(\{2 x\}^{2}-\{2 x\}+2 x-2 x^{2}\right)^{2} d x & =\frac{1}{2} \int_{0}^{2}\left(\{u\}^{2}-\{u\}+u-\frac{1}{2} u^{2}\right)^{2} d u \\
& =\frac{1}{8} \int_{0}^{1} u^{4} d u+\frac{1}{8} \int_{1}^{2}(u-2)^{4} d u=\frac{1}{20}
\end{aligned}
$$

