SOLUTION TO PROBLEM \#11890 OF THE AMERICAN MATHEMATICAL MONTHLY

Problem \#11890. Proposed by G. Apostolopoulos, Greece. Find all $x \in(1,+\infty)$ such that

$$
\sum_{k=0}^{\infty} \frac{1}{2 k+1}\left(\frac{1}{x^{2 k+1}}+\left(\frac{x-1}{x+1}\right)^{2 k+1}\right)=\frac{1}{2} \int_{0}^{x} \frac{d x}{\sqrt{1+t^{2}}}
$$

Solution by Tewodros Amdeberhan, Tulane University, LA, USA. Standard methods evaluate the two infinite sums (for $x>1$) and the integral to yield the equation

$$
\frac{1}{2} \log \left(\frac{x+1}{x-1}\right)+\frac{1}{2} \log x=\frac{1}{2} \log \left(x+\sqrt{1+x^{2}}\right) .
$$

After combining the logarithms and simplification, we are lead to solve $x^{4}-2 x^{3}-2 x^{2}-2 x+1=0$. This palindrome polynomial hints at its roots: $g \pm \sqrt{g},-\frac{1}{g} \pm i \sqrt{\frac{1}{g}}$ where $i=\sqrt{-1}$ and $g=\frac{1+\sqrt{5}}{2}$. In fact, it is easy to check that $x^{4}-2 x^{3}-2 x^{2}-2 x+1=\left(x^{2}-2 g x+1\right)\left(x^{2}+\frac{2}{g} x+1\right)=0$. Therefore, there is a unique real number $x=g+\sqrt{g}>1$ satisfying the equality in the problem.

