SOLUTION TO PROBLEM \#11897 OF THE AMERICAN MATHEMATICAL MONTHLY

Problem \#11897. Proposed by P. Dalyay, Hungary. Prove for $n \geq 0$,

$$
\sum_{\substack{k+j=n \\ k, j \geq 0}} \frac{1}{k+1}\binom{2 k}{k}\binom{2 j+2}{j+1}=2\binom{2 n+2}{n}
$$

Solution by Tewodros Amdeberhan, Tulane University, LA, USA. The identity is equivalent to $\sum_{k=0}^{n} \frac{1}{k+1}\binom{2 k}{k}\binom{2 n-2 k+2}{n-k+1}=2\binom{2 n+2}{2}$, or $\sum_{k=0}^{n+1} \frac{1}{k+1}\binom{2 k}{k}\binom{2 n-2 k+2}{n-k+1}=2\binom{2 n+2}{n}+\frac{1}{n+2}\binom{2 n+2}{n+1}=\binom{2 n+3}{n+1}$. Recalling the well-known generating function $\sum_{k \geq 0}\binom{2 k}{k} x^{k}=\frac{1}{\sqrt{1-4 x}}$ and $\sum_{k \geq 0}\binom{2 k}{k} \frac{x^{k}}{k+1}=\frac{2}{1+\sqrt{1-4 x}}$, the Cauchy product formula offers $\sum_{n \geq 0}\left(\sum_{k=0}^{n} \frac{1}{k+1}\binom{2 k}{k}\binom{2 n-2 k}{n-k}\right) x^{n}=\frac{2}{\sqrt{1-4 x}(1+\sqrt{1-4 x})}$. Also that, $\frac{2}{\sqrt{1-4 x}(1+\sqrt{1-4 x})}=\frac{2}{\sqrt{1-4 x}}-\frac{2}{1+\sqrt{1-4 x}}=\sum_{n \geq 0}\left(2\binom{2 n}{n}-\frac{1}{n+1}\binom{2 n}{n}\right) x^{n}=\sum_{n \geq 0}\binom{2 n+1}{n} x^{n}$. Comparing coefficients leads to the desired identity $\sum_{k=0}^{n} \frac{1}{k+1}\binom{2 k}{k}\binom{2 n-2 k}{n-k}=\binom{2 n+1}{n}$.

