
SOLUTION TO PROBLEM #11899

OF THE AMERICAN MATHEMATICAL MONTHLY

Problem #11899. Proposed by J. Sorel, Romania. Show that for any positive integer n,
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Solution by Tewodros Amdeberhan, Tulane University, LA, USA. Start with A1 :=
∑n

k=0

(
2n
k

)(
2n+1

k

)
,

A2 :=
∑2n+1

k=n+1

(
2n
k

)(
2n+1

k

)
, B1 :=

∑2n+1
k=n+1

(
2n
k−1

)(
2n+1

k

)
and B2 :=

∑n
k=0

(
2n
k−1

)(
2n+1

k

)
. Re-indexing
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It is routine to check that
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