SOLUTION TO PROBLEM \#11901

Problem \#11901. Proposed by Donald Knuth, Stanford University, Stanford, CA. For $n \in \mathbb{Z}^{+}$, let $[n]=\{1, \ldots, n\}$. Define the functions \uparrow and \downarrow on $[n]$ by $\uparrow x=\min \{x+1, n\}$ and $\downarrow x=\min \{x-1, n\}$. How many distinct mappings from $[n]$ to $[n]$ occur as compositions of \uparrow and \downarrow ?
Solution by Tewodros Amdeberhan, Tulane University, LA, and Richard P. Stanley, Massachusetts Institute of Technology, MA, USA. Each of the desired mappings f may be viewed as an n-letter word $w=w_{1} \cdots w_{n}$ with alphabets in $[n]$. Compositions of \uparrow, \downarrow are completely characterized by:
(a) the w_{i} 's are weakly increasing;
(a) only w_{1} and w_{n} can be repeated,
i.e., $w=w_{1}^{n}$ or $w=w_{1}^{k} w_{1}\left(w_{1}+1\right) \cdots\left(w_{1}+j\right)\left(w_{1}+j\right)^{\ell}$ for some $j \geq 1, k, \ell \geq 0$ with $k+j+1+\ell=n$. There are n possible ways for the case $w=w_{1}^{n}$. There are $n-j$ possible j consecutive letters $w_{1}\left(w_{1}+1\right) \cdots\left(w_{1}+j\right)$, each can be placed in $n-j$ possible positions to form part of a word w. If $j=n-1$ then $w=12 \cdots n$. This is impossible because w can never be one-to-one. Therefore, the total number of mappings of the required type equals

$$
n+\sum_{j=1}^{n-2}(n-j)^{2}=n-1+\sum_{k=1}^{n-1} k^{2}=n-1+\frac{1}{4}\binom{2 n}{3}
$$

whenever $n \geq 2$. The special case $n=1$ clearly gives exactly one mapping.

