SOLUTION TO PROBLEM #11901

Problem #11901. Proposed by Donald Knuth, Stanford University, Stanford, CA. For $n \in \mathbb{Z}^+$, let $[n] = \{1, \ldots, n\}$. Define the functions \uparrow and \downarrow on [n] by $\uparrow x = \min\{x+1, n\}$ and $\downarrow x = \min\{x-1, n\}$. How many distinct mappings from [n] to [n] occur as compositions of \uparrow and \downarrow ?

Solution by Tewodros Amdeberhan, Tulane University, LA, and Richard P. Stanley, Massachusetts Institute of Technology, MA, USA. Each of the desired mappings f may be viewed as an *n*-letter word $w = w_1 \cdots w_n$ with alphabets in [n]. Compositions of \uparrow, \downarrow are **completely characterized** by: (a) the w_i 's are weakly increasing;

(a) only w_1 and w_n can be repeated,

i.e., $w = w_1^n$ or $w = w_1^k w_1(w_1+1)\cdots(w_1+j)(w_1+j)^\ell$ for some $j \ge 1, k, \ell \ge 0$ with $k+j+1+\ell = n$. There are *n* possible ways for the case $w = w_1^n$. There are n-j possible *j* consecutive letters $w_1(w_1+1)\cdots(w_1+j)$, each can be placed in n-j possible positions to form part of a word *w*. If j = n-1 then $w = 12\cdots n$. This is impossible because *w* can never be one-to-one. Therefore, the total number of mappings of the required type equals

$$n + \sum_{j=1}^{n-2} (n-j)^2 = n - 1 + \sum_{k=1}^{n-1} k^2 = n - 1 + \frac{1}{4} \binom{2n}{3}$$

whenever $n \geq 2$. The special case n = 1 clearly gives exactly one mapping. \Box

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!\mathrm{E}}\!X$