SOLUTION TO PROBLEM \#11920

Problem \#11920. Proposed by A. Plaza and S. Falcon, Spain. For positive integer k, let $\left\{F_{k, n}\right\}_{n \geq 0}$ be the sequence defined by initial conditions $F_{k, 0}=0, F_{k, 1}=1$, and the recurrence $F_{k, n+1}=k F_{k, n}+F_{k, n-1}$. Find a closed formula for $\sum_{i=0}^{n}\binom{2 n+1}{i} F_{k, 2 n+1-2 i}$.
Solution by Tewodros Amdeberhan and Victor H. Moll, Tulane University, LA, USA. Binet's formula gives $F_{k, n}=\frac{\lambda_{+}^{n}-\lambda_{-}^{n}}{\lambda_{+}-\lambda_{-}}$where $\lambda_{ \pm}=\frac{k \pm \sqrt{k^{2}+4}}{2}$. Direct expansion using the Binomial Theorem, leads to $F_{k, n}=\sum_{j=0}^{\left\lfloor\frac{n-1}{2}\right\rfloor}\binom{n-1-j}{j} k^{n-1-2 j}$. Thus, $F_{k, 2 n+1-2 i}=\sum_{j=0}^{n-i}\binom{2 n-2 i-j}{j} k^{2 n-2 i-2 j}$. After repeated reindexing, we obtain

$$
\sum_{i=0}^{n}\binom{2 n+1}{i} F_{k, 2 n+1-2 i}=\sum_{i=0}^{n}\binom{2 n+1}{n-i} \sum_{j=0}^{i}\binom{2 i-j}{j} k^{2 i-2 j}=\sum_{i=0}^{n}\binom{2 n+1}{n-i} \sum_{j=0}^{i}\binom{i+j}{2 j} k^{2 j}
$$

Let's swap summation $\sum_{i=0}^{n}\binom{2 n+1}{n-i} \sum_{j=0}^{i}\binom{i+j}{2 j} k^{2 j}=\sum_{j=0}^{n} k^{2 j} \sum_{i=j}^{n}\binom{2 n+1}{n-i}\binom{i+j}{2 j}$. Next, we show $f_{j}(n):=\sum_{i=j}^{n} \frac{\binom{2 n+1}{n-i}\binom{i+j}{2}}{4^{n-j}\binom{n}{j}}=1$ using the Wilf-Zeilberger method. Denote $F_{j}(n, i):=\frac{\binom{2 n+1}{n-i}\binom{i+j}{2}}{4^{n-j}\binom{n}{j}}$. This involves a routine procedure: if $G_{j}(n, k)=\frac{(j-i) F_{j}(n, i)}{2(n+1-i)}$ then verify $F_{j}(n+1, i)-F_{j}(n, i)=$ $G_{j}(n, i+1)-G_{j}(n, i)$. Sum both sides over the integers to yield $f_{j}(n+1)-f_{j}(n)=0$, and check $f_{j}(0)=1$. These steps lead to the claim.
Put all these together with the Binomial Theorem: $\sum_{i=0}^{n}\binom{2 n+1}{i} F_{k, 2 n+1-2 i}=\sum_{j=0}^{n} k^{2 j} 4^{n-j}\binom{n}{j}=$ $\left(k^{2}+4\right)^{n}$. Therefore, the required closed formula is $\left(k^{2}+4\right)^{n}$.

