SOLUTION TO PROBLEM \#11928

Problem \#11928. Proposed by H. Ohtsuka, Japan. For positive integers n and m and for a sequence $\left\{a_{i}\right\}_{i \geq 1}$, prove
(a) $\quad \sum_{i=0}^{n} \sum_{j=0}^{m}\binom{n}{i}\binom{m}{j} a_{i+j}=\sum_{k=0}^{n+m}\binom{n+m}{k} a_{k}$
and

$$
\begin{equation*}
\sum_{0 \leq i<j \leq n}\binom{n}{i}\binom{n}{j}\binom{i+j}{n}=\sum_{0 \leq i<j \leq n}\binom{n}{i}\binom{n}{j}^{2} \tag{b}
\end{equation*}
$$

Solution by Tewodros Amdeberhan and Victor H. Moll, Tulane University, New Orleans, LA, USA. (a) follows from the Vandermonde-Chu identity after the substitution $i+j=k$:

$$
\sum_{i=0}^{n} \sum_{j=0}^{m}\binom{n}{i}\binom{m}{j} a_{i+j}=\sum_{k=0}^{n+m} a_{k} \sum_{j=0}^{m}\binom{n}{k-j}\binom{m}{j}=\sum_{k=0}^{m+n} a_{k}\binom{n+m}{k}
$$

(b): due to symmetry in i and j, we have $\sum_{0 \leq i<j \leq n}\binom{n}{i}\binom{n}{j}\binom{i+j}{n}=\sum_{0 \leq j<i \leq n}\binom{n}{i}\binom{n}{j}\binom{i+j}{n}$. Also,

$$
\sum_{j=0}^{n} \sum_{i=0}^{j-1}\binom{n}{i}\binom{n}{j}^{2}=\sum_{i=0}^{n} \sum_{j=i+1}^{n}\binom{n}{i}\binom{n}{n-j}^{2}=\sum_{i=0}^{n} \sum_{j=0}^{n-i-1}\binom{n}{n-i}\binom{n}{j}^{2}=\sum_{i=0}^{n} \sum_{j=0}^{i-1}\binom{n}{i}\binom{n}{j}^{2}
$$

shows that $\sum_{0 \leq i<j \leq n}\binom{n}{i}\binom{n}{j}^{2}=\sum_{0 \leq j<i \leq n}\binom{n}{i}\binom{n}{j}^{2}$. Furthermore, on the diagonal (across $i=j$) we claim $f(n):=\sum_{j=0}^{n}\binom{n}{j}^{2}\binom{2 j}{n}=\sum_{j=0}^{n}\binom{n}{j}^{3}:=g(n)$ holds. This is provable by Zeilberger's algorithm which verifies that both $f(n)$ and $g(n)$ satisfy the recurrence $y(0)=1, Y(1)=2$ together with

$$
-8(n+1)^{2} Y(n)-\left(7 n^{2}+21 n+16\right) Y(n+1)+(n+2)^{2} Y(n+2)=0
$$

Thus, (b) would follow if we prove $F(n):=\sum_{i=0}^{n} \sum_{j=0}^{n}\binom{n}{i}\binom{n}{j}\binom{i+j}{n}=\sum_{i=0}^{n} \sum_{j=0}^{n}\binom{n}{i}\binom{n}{j}^{2}:=G(n)$. To this end, we proceed with $G(n)=\sum_{i=0}^{n}\binom{n}{i} \sum_{j=0}^{n}\binom{n}{j}^{2}=\sum_{i=0}^{n}\binom{n}{i}\binom{2 n}{n}$ by Vandermonde-Chu. Next, applying part (a) with $a_{i+j}=\binom{i+j}{n}$ and changing indices results in

$$
F(n)=\sum_{k=0}^{2 n}\binom{2 n}{k}\binom{k}{n}=\sum_{k=n}^{2 n}\binom{2 n}{k}\binom{k}{n}=\sum_{i=0}^{n}\binom{2 n}{n+i}\binom{n+i}{n}=\sum_{i=0}^{n}\binom{2 n}{n}\binom{n}{i}
$$

where $\frac{(2 n)!(n+i)!}{(n+i)!(n-i)!n!!!}=\frac{(2 n)!}{(n-i)!n!i!}=\frac{(2 n)!n!}{n!2(n-i)!!!}$ has been used. So, $F(n)=G(n)$. This completes the proof of part (b) and the given problem.

