SOLUTION TO PROBLEM \#12099

Problem \#12099. Proposed by M. Bataille. Let m and n be integers with $0 \leq m \leq n-1$. Evaluate

$$
\sum_{k=0, k \neq m}^{n-1} \cot ^{2}\left(\frac{(m-k) \pi}{n}\right)
$$

Solution by Tewodros Amdeberhan and Victor H. Moll, Tulane University, New Orleans, LA, USA. Without loss of generality, we may assume $m=0$ since any other value of m simply renames the same summands. If $f(r)$ is periodic in \mathbb{Z} of period n and $\xi=e^{\frac{2 \pi i}{n}}$, then the discrete Fourier transform is

$$
f(r)=\frac{1}{n} \sum_{k=0}^{n-1} \hat{f}(j) \xi^{r k} \quad \text { where } \quad \hat{f}(k)=\sum_{r=0}^{n-1} f(r) \xi^{-r k}
$$

Let $f(r)=\left\{\frac{r}{n}\right\}-\frac{1}{2}$ when $n \nmid r$ and $f(r)=0$ otherwise; here $\{x\}=x-\lfloor x\rfloor$. Noting $\xi^{n}=1$, we have

$$
\hat{f}(k)=\sum_{r=1}^{n-1}\left(\frac{r}{n}-\frac{1}{2}\right) \xi^{-r k}=\frac{1}{n} \sum_{r=1}^{n-1} r \xi^{-r k}-\frac{1}{2} \sum_{r=1}^{n-1} \xi^{-r k}=\frac{\xi^{k}}{1-\xi^{k}}+\frac{1}{2}=\frac{1+\xi^{k}}{2\left(1-\xi^{k}\right)}=\frac{i}{2} \cot \left(\frac{k \pi}{n}\right)
$$

Using the convolution formula $\frac{1}{n} \sum_{k=1}^{n-1} \hat{f}(k) \hat{f}(-k)=\sum_{r=1}^{n-1} f(r) f(r)$, we obtain

$$
\begin{aligned}
\frac{1}{4 n} \sum_{k=1}^{n-1} \cot ^{2}\left(\frac{k \pi}{n}\right) & =-\frac{1}{n} \sum_{k=1}^{n-1}\left(\frac{i}{2} \cot \left(\frac{k \pi}{n}\right)\right)^{2}=\sum_{r=1}^{n-1}\left(\frac{r}{n}-\frac{1}{2}\right)^{2}=\frac{1}{n^{2}} \sum_{r=1}^{n-1} r^{2}-\frac{1}{n} \sum_{r=1}^{n-1} r+\sum_{r=1}^{n-1} \frac{1}{4} \\
& =\frac{(n-1) n(2 n-1)}{6 n^{2}}-\frac{(n-1) n}{2 n}+\frac{n-1}{4}=\frac{(n-1)(n-2)}{12 n}
\end{aligned}
$$

Therefore, we conclude that

$$
\sum_{k=0, k \neq m}^{n-1} \cot ^{2}\left(\frac{(m-k) \pi}{n}\right)=\frac{(n-1)(n-2)}{3}
$$

