SOLUTION TO PROBLEM \#12249

Problem \#12249. Proposed by F. Stanescu (Romania). Prove Prove

$$
\sum_{k=\lfloor n / 2\rfloor}^{n-1} \sum_{m=1}^{n-k}(-1)^{m-1} \frac{k+m}{k+1}\binom{k+1}{m-1} 2^{k-m}=\frac{n}{2}
$$

for any positive integer n.
Solution by Tewodros Amdeberhan, Tulane University and Akalu Tefera, Grand Valley State University, MI, USA. Let the inner sum be $F_{1}(k, m)=(-1)^{m-1} \frac{k+m}{k+1}\binom{k+1}{m-1} 2^{k-m}$ and $G_{1}(k, m)=$ $2(-1)^{m}\binom{k}{m-2} 2^{k-m}$. One can check that $F_{1}(k, m)=G_{1}(k, m+1)-G_{1}(k, m)$. So, we get a telescoping sum

$$
\begin{aligned}
\sum_{m=1}^{n-k} F_{1}(k, m) & =\sum_{m=1}^{n-k}\left[G_{1}(k, m+1)-G_{1}(k, m)\right]=G_{1}(k, n-k+1)-G_{1}(k, 1) \\
& =G_{1}(k, n-k+1)=2(-1)^{n-k+1}\binom{k}{n-k-1} 2^{2 k-n-1}
\end{aligned}
$$

It remain to show that $\sum_{k=\lfloor n / 2\rfloor}^{n-1} 2(-1)^{n-k+1}\binom{k}{n-k-1} 2^{2 k-n-1}=\frac{n}{2}$. Denote

$$
F_{2}(n, k)=\frac{(-1)^{n-k+1}}{n}\binom{k}{n-k-1} 2^{2 k-n+1} \quad \text { and } \quad G_{2}(n, k)=F_{2}(n, k) \frac{(2 k-n)(2 k-n+1)}{2(n-k)(n+1)}
$$

Once more, its can be verified that $F_{2}(n+1, k)-F_{2}(n, k)=G_{2}(n, k+1)-G_{2}(n, k)$. Now, sum both sides over all integers k. Then, the right-hand sides adds up to zero and hence the resulting equation becomes $\sum_{k=\lfloor(n+1) / 2\rfloor}^{n} F_{2}(n+1, k)-\sum_{k=\lfloor n / 2\rfloor}^{n} F_{2}(n, k)=0$. That means the sequence $f_{n}:=\sum_{k=\lfloor n / 2\rfloor}^{n} F_{2}(n, k)$ is constant. Since $f_{1}=0$, we conclude that $f_{n} \equiv 1$. The claim follows.

