SOLUTION TO PROBLEM \#12276

Problem \#12276. Proposed by J. Santmyer, Las Cruces, NM . Prove

$$
\sum_{n=2}^{\infty} \frac{1}{n+1} \sum_{i=1}^{\lfloor n / 2\rfloor} \frac{1}{2^{i-1}(i-1)!(n-2 i)!}=1
$$

Solution by Tewodros Amdeberhan and Victor H Moll, Tulane University, New Orleans, LA, USA. Start with the exponential generating function for the number of involutions I_{m}, given in the form $e^{x+\frac{1}{2} x^{2}}=\sum_{m=0}^{\infty} \frac{I_{m}}{m!} x^{m}$. It is also well-known $I_{m}=\sum_{k=0}^{\lfloor m / 2\rfloor} \frac{m!}{2^{k} k!(m-2 k)!}$. Now, proceed as follows:

$$
\begin{aligned}
x^{2} e^{x+\frac{1}{2} x^{2}} & =\sum_{m=0}^{\infty} \sum_{k=0}^{\lfloor m / 2\rfloor} \frac{x^{m+2}}{2^{k} k!(m-2 k)!}=\sum_{n=2}^{\infty} \sum_{k=0}^{\lfloor(n-2) / 2\rfloor} \frac{x^{n}}{2^{k} k!(n-2-2 k)!} \\
& =\sum_{n=2}^{\infty} x^{n} \sum_{i=1}^{\lfloor n / 2\rfloor} \frac{1}{2^{i-1}(i-1)!(n-2 i)!} .
\end{aligned}
$$

Integrate both sides over the range $0 \leq x \leq 1$ to find $\int_{0}^{1} x^{2} e^{x+\frac{1}{2} x^{2}} d x=\left.(x-1) e^{x+\frac{1}{2} x^{2}}\right|_{0} ^{1}=1$ while

$$
\int_{0}^{1} \sum_{n=2}^{\infty} x^{n} \sum_{i=1}^{\lfloor n / 2\rfloor} \frac{1}{2^{i-1}(i-1)!(n-2 i)!} d x=\sum_{n=2}^{\infty} \frac{1}{n+1} \sum_{i=1}^{\lfloor n / 2\rfloor} \frac{1}{2^{i-1}(i-1)!(n-2 i)!}
$$

The proof is complete.

