SOLUTION TO PROBLEM \#12289

Problem \#12289. Proposed by G. E. Andrews (USA) and M. Merca (Romania). Prove

$$
\sum_{n=0}^{\infty} 2 \cos \left(\frac{(2 n+1) \pi}{3}\right) q^{\binom{n+1}{2}}=\prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1-q^{6 n-1}\right)\left(1-q^{6 n-5}\right)
$$

when $|q|<1$.
Solution by Tewodros Amdeberhan and Victor H Moll, Tulane University, New Orleans, LA, USA. Schur's partition identity shows $\prod_{n=1}^{\infty}\left(1-q^{n}\right)\left(1-q^{6 n-1}\right)\left(1-q^{6 n-5}\right)=\prod_{n=1}^{\infty} \frac{1-q^{n}}{\left(1+q^{3 n-1}\right)\left(1+q^{3 n-2}\right)}$. On the other hand, $\sum_{n=0}^{\infty} 2 \cos \left(\frac{(2 n+1) \pi}{3}\right) q^{\binom{n+1}{2}}=\sum_{n=0}^{\infty} q^{\binom{n+1}{2}}-3 q \sum_{n=0}^{\infty} q^{9\binom{n+1}{2}}$. The rest follows from Bruce Berndt, Ramanujan's Notebooks, Part III, page 349, Entry 2 (ii) restated as

$$
\sum_{n=0}^{\infty} q^{\binom{n+1}{2}}-3 q \sum_{n=0}^{\infty} q^{9\binom{n+1}{2}}=\prod_{n=1}^{\infty} \frac{\left(1-q^{n}\right)\left(1-q^{6 n}\right)}{\left(1+q^{n}\right)\left(1-q^{3 n}\right)}=\prod_{n=1}^{\infty} \frac{1-q^{n}}{\left(1+q^{3 n-1}\right)\left(1+q^{3 n-2}\right)}
$$

REMARK. The latter identity can be reproved in a different way than what appeared in the reference indicated above. Let $\eta(q)=q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)$. After some reorganization the last identity can be pictured in the form

$$
\frac{\eta^{4}\left(q^{4}\right) \eta^{2}\left(q^{6}\right)}{\eta^{2}\left(q^{2}\right)}-3 \frac{\eta^{2}\left(q^{4}\right) \eta^{2}\left(q^{6}\right) \eta^{2}\left(q^{36}\right)}{\eta\left(q^{2}\right) \eta\left(q^{18}\right)}=\eta\left(q^{2}\right) \eta\left(q^{4}\right) \eta\left(q^{6}\right) \eta\left(q^{12}\right) .
$$

Each of the three terms in the above equation are in the space of weight 2 cusp forms for the group $\Gamma_{0}(72)$. This space has dimension 5 , and if $f=\sum_{n=1}^{\infty} a_{n} q^{n}$ is a function in this space with $a_{1}=a_{2}=\cdots=a_{7}=0$, it follows that $f=0$. Hence, it suffices to verify that the coefficients of q^{1} through q^{7} are the same for the two sides of the identity at hand.

