SOLUTION TO PROBLEM \#12298

Problem \#12298. Proposed by G. Stoica (Canada). Let n be a positive integer, S_{n} be the group of all permutations of $\{1,2, \ldots, n\}$, and z be a primitive complex n-th root of unity. Prove

$$
\sum_{\sigma \in S_{n}} \prod_{j=1}^{n}\left(1-x_{j} z^{\sigma(j)}\right)=n!\left(1-\prod_{k=1}^{n} x_{k}\right)
$$

for any $x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{C}$.
Solution by Tewodros Amdeberhan and Victor H Moll, Tulane University, New Orleans, LA, USA. Let $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right)$ and $\boldsymbol{e}_{k}(\boldsymbol{x})=\sum_{j_{1}<\cdots<j_{k}} x_{1}^{j_{1}} \cdots x_{k}^{j_{k}}$ be the k-th elementary symmetric polynomial with $\boldsymbol{e}_{0}(\boldsymbol{x})=1$. Denote $\xi_{j}=z^{j}$ so that $\boldsymbol{X}^{n}-1=\left(\boldsymbol{X}-\xi_{1}\right) \cdots\left(\boldsymbol{X}-\xi_{n}\right)=\sum_{k=0}^{n}(-1)^{k} \boldsymbol{e}_{k}(\boldsymbol{\xi}) \boldsymbol{X}^{n-k}$. Then, $\boldsymbol{e}_{k}(\boldsymbol{\xi})=0$ for $0<k<n$ and $\boldsymbol{e}_{0}(\boldsymbol{\xi})=1, \boldsymbol{e}_{n}(\boldsymbol{\xi})=(-1)^{n-1}$. Here $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{n}\right)$.
By construction, the given sum $\sum_{\sigma} \prod_{j}\left(1-x_{j} \xi_{\sigma(j)}\right)=\sum_{\sigma} \prod_{j}\left(1-x_{\sigma^{-1}(j)} \xi_{j}\right)$ is symmetric in both sets of variables ξ and \boldsymbol{x}. It is now easy to rewrite the left-hand side of the claim as

$$
\sum_{\sigma \in S_{n}} \prod_{j=1}^{n}\left(1-x_{j} \xi_{\sigma(j)}\right)=\sum_{k=0}^{n}(-1)^{k} \frac{n!}{\binom{n}{k}} \boldsymbol{e}_{k}(\boldsymbol{x}) \boldsymbol{e}_{k}(\boldsymbol{\xi})=n!-n!\boldsymbol{e}_{n}(\boldsymbol{x})=n!\left(1-\prod_{k=1}^{n} x_{k}\right) .
$$

The proof is now complete.

