SOLUTION TO PROBLEM #12298

Problem #12298. Proposed by G. Stoica (Canada). Let n be a positive integer, S_n be the group of all permutations of $\{1, 2, \ldots, n\}$, and z be a primitive complex n-th root of unity. Prove

$$\sum_{\sigma \in S_n} \prod_{j=1}^n \left(1 - x_j z^{\sigma(j)} \right) = n! \left(1 - \prod_{k=1}^n x_k \right)$$

for any $x_1, x_2, \ldots, x_n \in \mathbb{C}$.

Solution by Tewodros Amdeberhan and Victor H Moll, Tulane University, New Orleans, LA, USA. Let $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{e}_k(\mathbf{x}) = \sum_{j_1 < \cdots < j_k} x_1^{j_1} \cdots x_k^{j_k}$ be the k-th elementary symmetric polynomial with $\mathbf{e}_0(\mathbf{x}) = 1$. Denote $\xi_j = z^j$ so that $\mathbf{X}^n - 1 = (\mathbf{X} - \xi_1) \cdots (\mathbf{X} - \xi_n) = \sum_{k=0}^n (-1)^k \mathbf{e}_k(\boldsymbol{\xi}) \mathbf{X}^{n-k}$. Then, $\mathbf{e}_k(\boldsymbol{\xi}) = 0$ for 0 < k < n and $\mathbf{e}_0(\boldsymbol{\xi}) = 1, \mathbf{e}_n(\boldsymbol{\xi}) = (-1)^{n-1}$. Here $\boldsymbol{\xi} = (\xi_1, \ldots, \xi_n)$.

By construction, the given sum $\sum_{\sigma} \prod_{j} (1 - x_j \xi_{\sigma(j)}) = \sum_{\sigma} \prod_{j} (1 - x_{\sigma^{-1}(j)} \xi_j)$ is symmetric in both sets of variables ξ and \boldsymbol{x} . It is now easy to rewrite the left-hand side of the claim as

$$\sum_{\sigma \in S_n} \prod_{j=1}^n (1 - x_j \xi_{\sigma(j)}) = \sum_{k=0}^n (-1)^k \frac{n!}{\binom{n}{k}} \boldsymbol{e}_k(\boldsymbol{x}) \boldsymbol{e}_k(\boldsymbol{\xi}) = n! - n! \, \boldsymbol{e}_n(\boldsymbol{x}) = n! \left(1 - \prod_{k=1}^n x_k\right).$$

The proof is now complete. \Box

Typeset by $\mathcal{A}_{\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$