SOLUTION TO PROBLEM \#12302

Problem \#12302. Proposed by M. Omarjee (France). Let n be a positive integer, and let $A_{2 n}$ be the $2 n$-by- $2 n$ skew-symmetric matrix with (i, j)-entry $\frac{\sin (j-i)}{\sin (j+i)}$. Prove

$$
\operatorname{det}\left(A_{2 n}\right)=\prod_{j<i}^{1,2 n}\left(\frac{\sin (j-i)}{\sin (j+i)}\right)^{2}
$$

Solution by Tewodros Amdeberhan, Tulane University, New Orleans, LA, USA; Shalosh B. Ekhad, Rutgers University, New Brunswick, NJ, USA. As a first step, use $\sin (a \pm b)=\sin a \cos b \pm \sin b \cos b$ so that the claim is tantamount to

$$
\operatorname{det}\left(A_{2 n}\right)=\operatorname{det}\left(\frac{\tan j-\tan i}{\tan j+\tan i}\right)_{i, j}^{1,2 n}=\prod_{j<i}^{1,2 n}\left(\frac{\tan j-\tan i}{\tan j+\tan i}\right)^{2} .
$$

We opt to generalize and use our popular technique of Dodgson's Condensation formula. Given an $n \times n$ matrix \boldsymbol{M}, let $\boldsymbol{M}_{r}(i, j)$ denote the $r \times r$ minor consisting of r contiguous rows and columns of \boldsymbol{M} starting with row i and column j. In particular, $\boldsymbol{M}_{n}(1,1)=\operatorname{det} \boldsymbol{M}$. Then, according to Dodgson, there follows the recurrence $\boldsymbol{M}_{n}(1,1) \boldsymbol{M}_{n-2}(2,2)=\boldsymbol{M}_{n-1}(1,1) \boldsymbol{M}_{n-1}(2,2)-\boldsymbol{M}_{n-1}(2,1) \boldsymbol{M}_{n-1}(1,2)$. For the present purpose, consider (the claim) on the matrix determinants

$$
\begin{aligned}
\boldsymbol{M}_{n}(a+1, b+1): & =\operatorname{det}\left(\frac{C y_{j+b}-D x_{i+a}}{y_{j+b}+x_{i+a}}\right)_{i, j}^{1, n} \\
= & \frac{(C+D)^{n-1}\left(C \prod_{j} y_{j+b}+(-1)^{n} D \prod_{i} x_{i+a}\right) \prod_{i+a<j+b}\left(y_{j+b}-y_{i+b}\right)\left(x_{j+a}-x_{i+a}\right)}{\prod_{i, j}\left(y_{j+b}+x_{i+a}\right)} .
\end{aligned}
$$

However, one verifies this assertion routinely by checking Dodgson's recurrence is satisfied by the right-hand side, followed by comparing initial conditions (say, for $n=1$ and $n=2$). To get back to problem, let $a=b=0, C=D=1, y_{j}=\tan j, x_{i}=\tan i$. Obviously, if n is odd then the determinant vanishes. If $n \rightarrow 2 n$ is even, we recover the desired solution to the proposer's determinantal evaluation. Remark. The fact that the right-hand side is perfect square is immediate from general principle because the matrix is skew-symmetric.

