SOLUTION TO PROBLEM \#12305

Problem \#12305. Proposed by S. Sharma (India). Let γ be the Euler-Mascheroni constant. Prove

$$
\int_{0}^{1} \frac{x-1-x \log x}{x \log x-x \log ^{2} x} d x=\gamma
$$

Solution by Tewodros Amdeberhan and Victor H. Moll, Tulane University, New Orleans, LA, USA. First off, we have $\gamma=\int_{0}^{1}\left(\frac{1}{\log x}+\frac{1}{1-x}\right) d x$ as one of the integral representations for γ. With this in mind, it suffices to show the difference between the two integral is zero. That means, evaluate

$$
\begin{aligned}
\int_{0}^{1}\left(\frac{x-1-x \log x}{x \log x-x \log ^{2} x}-\frac{1}{\log x}-\frac{1}{1-x}\right) d x & =\int_{0}^{1}\left(\frac{1}{\log x}-\frac{1}{x \log x-x \log ^{2} x}-\frac{1}{\log x}-\frac{1}{1-x}\right) d x \\
& =-\int_{0}^{1}\left(\frac{1}{x \log x-x \log ^{2} x}+\frac{1}{1-x}\right) d x
\end{aligned}
$$

So, we focus on last integral. This, however, goes as follows: since

$$
\int\left(\frac{1}{x \log x-x \log ^{2} x}+\frac{1}{1-x}\right) d x=\log \left(\frac{\log x}{(1-x)(\log x-1)}\right)
$$

we compute two limits: $x \rightarrow 0^{+}$and $x \rightarrow 1^{-}$. Both are executed via L'Hôpital's Rule, resulting in

$$
\lim _{x \rightarrow 0^{+}} \log \left(\frac{\log x}{(1-x)(\log x-1)}\right)=0 \quad \text { and } \quad \lim _{x \rightarrow 1^{-}} \log \left(\frac{\log x}{(1-x)(\log x-1)}\right)=0
$$

The proof is complete.

