SOLUTION TO PROBLEM \#12349

Problem \#12349. Proposed by R. Tauraso (Italy). Let A_{n} be the set of permutations of $\{1, \ldots, n\}$ that have at least one fixed point. For $\pi \in A_{n}$, we write $\operatorname{Fix}(\pi)$ for $\{j: \pi(j)=j\}$. Evaluate

$$
a_{n}:=\sum_{\pi \in A_{n}}\left(\frac{\operatorname{sgn}(\pi)}{|F i x(\pi)|} \sum_{j \in F i x(\pi)} j\right)
$$

Solution by Tewodros Amdeberhan, Tulane University, New Orleans, LA, USA. Let $D(n)$ be the set of derangements on n letters. We rearrange the sum by the number k of fixed points i_{1}, \ldots, i_{k} :

$$
\begin{aligned}
a_{n} & =\sum_{k=1}^{n} \sum_{\pi \in D(n-k)} \frac{\operatorname{sgn}(\pi)}{k} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left(i_{1}+\cdots+i_{k}\right) \\
& =\frac{1}{n}\binom{n+1}{2}+\sum_{k=1}^{n-2} \sum_{\pi \in D(n-k)} \frac{\operatorname{sgn}(\pi)}{k} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left(i_{1}+\cdots+i_{k}\right) \\
& =\frac{n+1}{2}+\sum_{k=1}^{n-2} \frac{(-1)^{n-1-k}(n-1-k)}{k} \sum_{1 \leq i_{1}<\cdots<i_{k} \leq n}\left(i_{1}+\cdots+i_{k}\right) \\
& =\frac{n+1}{2}+\binom{n+1}{2} \sum_{k=1}^{n-2} \frac{(-1)^{n-1-k}(n-1-k)}{k}\binom{n-1}{k-1} \\
& =\frac{n+1}{2}+\binom{n+1}{2}\left[\frac{\left((-1)^{n}+1\right)(n-1)}{n}-1\right] \\
& =\frac{(-1)^{n}\left(n^{2}-1\right)}{2} ;
\end{aligned}
$$

where we noted that $\sum_{\boldsymbol{\pi} \in \boldsymbol{D}(\boldsymbol{n})} \boldsymbol{\operatorname { s g n }}(\boldsymbol{\pi})=(\mathbf{- 1})^{\boldsymbol{n} \boldsymbol{1}}(\boldsymbol{n} \mathbf{- 1})$ and if $|F i x(\pi)|=n-1$ then $|F i x(\pi)|=n$, also that $\sum_{k=0}^{n-1}(-1)^{k}\binom{n-1}{k}=0$.
Lemтa. $\sum_{\pi \in D(n)} \operatorname{sgn}(\pi)=(-1)^{\boldsymbol{n - 1}}(n-1)$.
Proof. We may interpret the sum as the determinant of an $n \times n$ matrix A_{n} with zeros on the main diagonal and ones everywhere else. Then $A_{n}+I_{n}$ is the matrix consisting entirely of ones, which clearly has $n-1$ zero rows after row-reduction. Therefore A_{n} has eigenvalue -1 , repeated (at least) $n-1$ times, and since $\operatorname{trace}\left(A_{n}\right)=0$, the other eigenvalue is $n-1$. So, their product gives $\operatorname{det}\left(A_{n}\right)=(-1)^{n-1}(n-1)$.

