SOLUTION TO PROBLEM \#12375

Problem \#12375. Proposed by H. Chen (USA). Let

$$
I_{n}=\int_{0}^{\infty}\left(1-x^{2} \sin ^{2}\left(\frac{1}{x}\right)\right)^{n} d x
$$

Prove that I_{n} is a rational multiple of π whenever n is a positive integer.
Solution by Tewodros Amdeberhan, Tulane University, New Orleans, LA, USA. Change variables $t=\frac{1}{x}, d x=-\frac{d t}{t^{2}}$, recall $\operatorname{sinc}(x)=\frac{\sin x}{x}$ and convert the given integral into

$$
I_{n}=\int_{0}^{\infty}\left(1-\operatorname{sinc}^{2} t\right)^{n} \frac{d t}{t^{2}}
$$

Introduce the functions $f(t)=1-\operatorname{sinc}^{2} t, g(t)=\frac{1-\operatorname{sinc}^{2} t}{t^{2}}, F(s)=2 \pi \delta_{0}(s)+\frac{\pi(|s|-2)}{2} \cdot \chi_{|s|<2}(s)$ and $G(s)=-\frac{\pi(|s|-2)^{3}}{12} \cdot \chi_{|s|<2}(s)$, where $\chi_{|s|<2}$ stands for the characteristic function of the interval $\{|s|<2\}$. Define the Fourier transform by $(\mathcal{F} h)(s)=\int_{\mathbb{R}} h(t) e^{-i t s} d t$. Then, it is an easy check that $\frac{1}{2 \pi} \mathcal{F}^{-1} F=f$ and $\frac{1}{2 \pi} \mathcal{F}^{-1} G=g$. Therefore, $\mathcal{F} f=F, \mathcal{F}(g)=G, f g=\mathcal{F}^{-1}(F * G)$. Since all our functions are even, the inversion theorem shows $\mathcal{F}(f g)=\frac{1}{2 \pi}(F * G)$, as a convolution. An obvious repetition implies that

$$
\mathcal{F}\left(f^{n-1} g\right)=\frac{1}{2 \pi}(F * \cdots * G)=\frac{1}{(2 \pi)^{n-1}}\left(F *^{n-1} G\right)
$$

If $n=1$ then $\frac{2 \pi}{3}=G(0)=\mathcal{F}(g)(0)=2 I_{1}$; in general, $\frac{1}{(2 \pi)^{n-1}}\left(F *^{n-1} G\right)(0)=\mathcal{F}\left(f^{n-1} g\right)(0)=2 I_{n}$. Since both $\frac{1}{2 \pi} F$ and $\frac{1}{2 \pi} G$ are polynomials in $\mathbb{Q}[s]$, we realize $\frac{1}{(2 \pi)^{n}}\left(F *^{n-1} G\right) \in \mathbb{Q}[s]$. That means exactly one π is spared in I_{n} so that $\frac{1}{\pi} I_{n} \in \mathbb{Q}[s]$. The proof is complete.

