SOLUTION TO PROBLEM \#12407

Problem \#12407. Proposed by Anonymous (India). Let r be a positive real number. Evaluate

$$
\int_{0}^{\infty} \frac{x^{r-1}}{\left(1+x^{2}\right)\left(1+x^{2 r}\right)} d x
$$

Solution by Tewodros Amdeberhan, Tulane University, New Orleans, LA, USA. Denote the integral by I and make the substitution $y=\frac{1}{x}$ so that

$$
I=\int_{0}^{\infty} \frac{y^{r+1}}{\left(1+y^{2}\right)\left(1+y^{2 r}\right)} d y
$$

Averaging out the two forms of the integral gives $I=\frac{1}{2} \int_{0}^{\infty} \frac{z^{r-1}}{1+z^{2 r}} d z$. Again, change variables with $w=z^{r}$ so that $I=\frac{1}{2 r} \int_{0}^{\infty} \frac{d w}{1+w^{2}}$. Using the well-known (and elementary) fact $\int_{0}^{\infty} \frac{d w}{1+w^{2}}=\frac{\pi}{2}$, one obtains $I=\frac{1}{2 r} \frac{\pi}{2}=\frac{\pi}{4 r}$.

