## SOLUTION TO PROBLEM \#12421

Problem \#12421. Proposed by I. Casu, Romania. Let $S$ be a finite set of real numbers, and let $T$ be the set of all $n$-by- $n$ matrices having entries in $S$. Prove

$$
\sum_{A \in T} \operatorname{trace}\left(A^{2}\right)=\sum_{A \in T}(\operatorname{trace}(A))^{2}
$$

Solution by Tewodros Amdeberhan, Tulane University, New Orleans, LA, USA. Using the very definition of trace, we proceed in the manner

$$
\begin{aligned}
\sum_{A \in T} \operatorname{trace}\left(A^{2}\right) & =\sum_{A \in T} \sum_{i=1}^{n}\left[A^{2}\right]_{i i}=\sum_{A \in T} \sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} A_{j i} \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}\left[\sum_{A \in T} A_{j i} A_{i j}\right]=\sum_{i=1}^{n} \sum_{j=1}^{n}\left[\sum_{x \in S, y \in S} \sum_{\substack{A \in T \\
A_{i j}=x, A_{j i}=y}} x y\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}\left[\sum_{x \in S, y \in S} x y \cdot \#\left\{A \in T: A_{i j}=x, A_{j i}=y\right\}\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}\left[\sum_{x \in S, y \in S} x y \cdot \#\left\{A \in T: A_{i i}=x, A_{j j}=y\right\}\right] \\
& =\sum_{i=1}^{n} \sum_{j=1}^{n}\left[\sum_{x \in S, y \in S} \sum_{A \in T} x y=\sum_{i=1}^{A_{i i}=x, A_{j j}=y} \sum_{j=1}^{n}\left[\sum_{A \in T} A_{i i} A_{j j}\right]\right. \\
& =\sum_{A \in T}\left[\sum_{i=1}^{n} A_{i i}\right]\left[\sum_{j=1}^{n} A_{j j}\right]=\sum_{A \in T}\left[\sum_{i=1}^{n} A_{i i}\right]^{2}=\sum_{A \in T}(\operatorname{trace}(A))^{2} .
\end{aligned}
$$

