
SOLUTION TO PROBLEM #12449

Problem #12449. Proposed by Veselin Jungić, Simon Fraser University, Burnaby, Canada. Let n
be a positive integer with n ≥ 2. The squares of an (n2 +n−1)-by-(n2 +n−1) grid are colored with
up to n colors. Prove that there exist two rows and two columns whose four squares of intersection
have the same color.

Solution by Tewodros Amdeberhan, Tulane University, New Orleans, LA, USA. Let N
n ≥ 2, and let
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Claim. Let X1, X2, . . . , XN be different points. If we have m many different n-colorings of
X1, . . . , XN , then there are two points and two colorings such that both points in both of the colorings
have the same color.

Proof. For a fixed coloring of X1, . . . , XN , we say two points are said to form a “couple” if they
get the same color. First we give a lower bound on the number of “couples” in the above coloring.
Denote by ci the number of points of the ith color. Obviously, c1 + · · · + cn = N . So we have(
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But there are
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possible “couples” altogether, and a “couple” can be colored with n different

colors. Thus, as long as
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holds, among any m colorings of X1, . . . , XN with n colors we can always find two sharing a common
“couple” which receives the same color in both colorings. �

We apply the claim as follows: choose N = n2 + n − 1 and t = n + 1. By direct calculation,
m = n2 + n − 1. In the given problem, X1, . . . , Xn2+n−1 are the squares in the first row that are
covered with n-colors and this being repeated m = n2 + n − 1 times to line up one-after-another
and form the desired square grid. The conclusion of the proven claim implies the solution of the
problem. �
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