Tewodros Amdeberhan

DeVry Institute, Mathematics
630 US Highway One, North Brunswick, NJ 08902
amdberhan@admin.nj.devry.edu

Problem \#1540: [P]
(a) Show that $x^{n}+(x-1)^{n}-(x+1)^{n}$ has a unique non-zero real root r_{n}.
(b) Show that r_{n} increases monotonically.
(c) Evaluate $\lim _{n \rightarrow \infty} r_{n} / n$.

Solution: Let $f_{n}(x):=x^{n}+(x-1)^{n}-(x+1)^{n}$. Notice that if $x=-t<0$, then we have

$$
f_{n}(-t)=(-1)^{n}\left[t^{n}+(t+1)^{n}-(t-1)^{n}\right]
$$

is either always positive or negative (depending on n). Thus it suffices to look for the positive roots of the f_{n} 's.

Claim: \exists ! $r_{n}>0$ such that $f_{n}(x)<0$ for $0<x<r_{n} ; f_{n}(x)>0$ for $x>r_{n} ; f_{n}\left(r_{n}\right)=0$ and $r_{n}>r_{n-1}$.

We proceed by induction. For $n=1$, the claim is trivial: $f_{1}(x)=x-2$, and $r_{1}=2$. Assume the claim holds for $n-1$. Then, since

$$
f_{n}(x)=(-1)^{n}-1+n \int_{0}^{x} f_{n-1}(t) d t
$$

we have $f_{n}(x) \leq 0$ for $0<x \leq r_{n-1}$. But $f_{n}(\infty)=\infty$. So, by the Intermediate Value Theorem there is $r_{n}>r_{n-1}>0$ a root of $f_{n}(x)$. Moreover, $f_{n}^{\prime}(x)=n f_{n-1}(x)$ implies that $f_{n}(x)$ is strictly increasing once $x>r_{n-1}$. Consequently, such a solution is unique and hence the claim follows.

Now, the equations $0=r_{n}^{n}+\left(r_{n}-1\right)^{n}-\left(r_{n}+1\right)^{n}$ may be rewritten as

$$
\begin{equation*}
\left(1+\frac{1}{r_{n}}\right)^{r_{n}\left(n / r_{n}\right)}-\left(1-\frac{1}{r_{n}}\right)^{r_{n}\left(n / r_{n}\right)}=1 . \tag{1}
\end{equation*}
$$

Taking limits in the last equation, we obtain

$$
\begin{equation*}
e^{\lim _{n \rightarrow \infty} n / r_{n}}-e^{-\lim _{n \rightarrow \infty} n / r_{n}}=1 \tag{2}
\end{equation*}
$$

With this, n / r_{n} must be bounded (else equation (2) leads to Cont radication, $\infty=1$). Hence each subsequence has a convergent subsequence, and for such a convergent subsequence, the common limit, say L, can be determined from $e^{L}-e^{-L}=1$. This in turn gives $L=\operatorname{arcsinh}(1 / 2)=\ln ((1+\sqrt{5}) / 2)$. Therefore, the desire limit is

$$
\lim _{n \rightarrow \infty} \frac{r_{n}}{n}=1 / \ln \left(\frac{1+\sqrt{5}}{2}\right) .
$$

References:

[P] P 1540, Mathematics Magazine, (71) \#1, February 1998.

