SOLUTION TO PROBLEM \#1546
 PROPOSED BY B. G. KLEIN, ET AL

Tewodros Amdeberhan

DeVry Institute, Mathematics
630 US Highway One, North Brunswick, NJ 08902
amdberhan@admin.nj.devry.edu

Problem \#1546: [P] Given $y>1$, let P be the set of all real polynomials $p(x)$ with nonnegative coefficients that satisfy $p(1)=1$ and $p(3)=y$. Prove there exists $p_{0}(x) \in P$ such that
(i) $\{p(2): p(x) \in P\}=\left(1, p_{0}(2)\right]$;
(ii) if $p(x) \in P$ and $p(2)=p_{0}(2)$, then $p(x)=p_{0}(x)$.

Solution: We show that $p_{0}(x)=\frac{y-1}{2}(x-1)+1$ is the unique polynomial satisfying the above conditions with $p_{0}(2)=(y+1) / 2$.

Note that since coefficients are nonnegative, all functions in P are strictly increasing as well as concave upwards for $1 \leq x \leq 3$. Thus certainly for each $p(x) \in P$, we have $p(x) \leq p_{0}(x), x \in[1,3]$ since the line $p_{0}(x)$ joins the end points $(1,1)$ and $(3, y)$.

Furthermore, $p_{0}(x)$ is unique. Else assume that $p(2)=p_{0}(2)$, for some $p_{0}(x) \neq p(x) \in P$. Then by the Intermediate-Value-Theorem for derivatives, there exist two distinct points (one in $(1,2)$ and another in $(2,3)$) where tangents to $p(x)$ (hence derivatives) have same slope, that is, $(y-1) / 2$. This cannot be true of the nonlinear $p(x)$ as its derivative is one-to-one (because $p^{\prime \prime}(x)>0$ there). Contradiction.

To prove (i), first note that strict monotonicity implies that for $p(x) \in P$, we have $p(2)>1$. Moreover it is easy to manufacture polynomials in P with $p(2)=\alpha$, for a given $1<\alpha<(y+1) / 2$. For example, one may use $p(x)=a x^{n}+b x+c$ with suitable constants a, b, c and n.

References:

[P] P 1546, Mathematics Magazine, (71) \#2, April 1998.

