SOLUTION TO PROBLEM #1546 PROPOSED BY B. G. KLEIN, ET AL

TEWODROS AMDEBERHAN

DeVry Institute, Mathematics 630 US Highway One, North Brunswick, NJ 08902 amdberhan@admin.nj.devry.edu

Problem #1546: [P] Given y > 1, let P be the set of all real polynomials p(x) with nonnegative coefficients that satisfy p(1) = 1 and p(3) = y. Prove there exists $p_0(x) \in P$ such that

(i) $\{p(2) : p(x) \in P\} = (1, p_0(2)];$

(ii) if $p(x) \in P$ and $p(2) = p_0(2)$, then $p(x) = p_0(x)$.

Solution: We show that $p_0(x) = \frac{y-1}{2}(x-1) + 1$ is the unique polynomial satisfying the above conditions with $p_0(2) = (y+1)/2$.

Note that since coefficients are nonnegative, all functions in P are strictly increasing as well as concave upwards for $1 \le x \le 3$. Thus certainly for each $p(x) \in P$, we have $p(x) \le p_0(x), x \in [1,3]$ since the line $p_0(x)$ joins the end points (1,1) and (3, y).

Furthermore, $p_0(x)$ is unique. Else assume that $p(2) = p_0(2)$, for some $p_0(x) \neq p(x) \in P$. Then by the Intermediate-Value-Theorem for derivatives, there exist two distinct points (one in (1, 2) and another in (2, 3)) where tangents to p(x) (hence derivatives) have same slope, that is, (y - 1)/2. This cannot be true of the nonlinear p(x) as its derivative is one-to-one (because p''(x) > 0 there). Contradiction.

To prove (i), first note that strict monotonicity implies that for $p(x) \in P$, we have p(2) > 1. Moreover it is easy to manufacture polynomials in P with $p(2) = \alpha$, for a given $1 < \alpha < (y+1)/2$. For example, one may use $p(x) = ax^n + bx + c$ with suitable constants a, b, c and n. \Box

1

References:

[**P**] P 1546, Mathematics Magazine, (71) #2, April 1998.

Typeset by \mathcal{AMS} -TEX