SOLUTION TO PROBLEM #1554 PROPOSED BY H. C. MORRIS

TEWODROS AMDEBERHAN

DeVry Institute, Mathematics 630 US Highway One, North Brunswick, NJ 08902 amdberhan@admin.nj.devry.edu

Problem #1554: [P] For $0 \le r \le 1$, find the volume $V_n(r)$ of

$$\left\{ (x_1, ..., x_n) \in [0, 1]^n : \prod_{i=1}^n x_i \le r \right\}.$$

Solution: Denote the above set by $S_n(r)$, then observe that this set is the cube $I^n := [0,1]^n$ with its top right portion chopped off by the hyperboloid $\{(x_1, ..., x_n) \in \mathbb{R}^n : \prod_{i=1}^n x_i = r\}$. Hence, for n > 1 we have

$$V_n(r) = \int_{S_n(r)} dx = V(I^n) - \int_{[r,1]^{n-1}} \left(1 - \frac{r}{x_1 \cdots x_{n-1}}\right) dx_1 \cdots x_{n-1}.$$

= $V(I^n) - V([r,1]^{n-1}) + r \left(\int_r^1 \frac{1}{y} dy\right)^{n-1}$
= $1 - (1-r)^{n-1} + r(-1)^{n-1} ln^{n-1}(r).$

Since clearly $V_1(r) = r$, we get $V_n(r) = 1 - (1 - r)^{n-1} + r(-1)^{n-1} ln^{n-1}(r)$, for all $n \ge 1$. \Box

1

References:

[P] P 1554, Mathematics Magazine, (71) #4, October 1998.

Typeset by $\mathcal{A}_{\!\mathcal{M}}\!\mathcal{S}\text{-}T_{\!E}\!X$