SOLUTION TO PROBLEM \#1554
 PROPOSED BY H. C. MORRIS

Tewodros Amdeberhan

DeVry Institute, Mathematics
630 US Highway One, North Brunswick, NJ 08902
amdberhan@admin.nj.devry.edu

Problem \#1554: [$\mathbf{P}]$ For $0 \leq r \leq 1$, find the volume $V_{n}(r)$ of

$$
\left\{\left(x_{1}, \ldots, x_{n}\right) \in[0,1]^{n}: \prod_{i=1}^{n} x_{i} \leq r\right\}
$$

Solution: Denote the above set by $S_{n}(r)$, then observe that this set is the cube $I^{n}:=[0,1]^{n}$ with its top right portion chopped off by the hyperboloid $\left\{\left(x_{1}, \ldots, x_{n}\right) \in R^{n}: \prod_{i=1}^{n} x_{i}=r\right\}$. Hence, for $n>1$ we have

$$
\begin{gathered}
V_{n}(r)=\int_{S_{n}(r)} d x=V\left(I^{n}\right)-\int_{[r, 1]^{n-1}}\left(1-\frac{r}{x_{1} \cdots x_{n-1}}\right) d x_{1} \cdots x_{n-1} \\
=V\left(I^{n}\right)-V\left([r, 1]^{n-1}\right)+r\left(\int_{r}^{1} \frac{1}{y} d y\right)^{n-1} \\
=1-(1-r)^{n-1}+r(-1)^{n-1} l^{n-1}(r)
\end{gathered}
$$

Since clearly $V_{1}(r)=r$, we get $V_{n}(r)=1-(1-r)^{n-1}+r(-1)^{n-1} l n^{n-1}(r)$, for all $n \geq 1$.

References:

[P] P 1554, Mathematics Magazine, (71) \#4, October 1998.

