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Problem #1562: [P] Prove that
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Proof: Let z := 2cos6�
17

+ 2cos10�
17

. Then equation (1) becomes tan�14 = 4tan�1z. Now, a
successive application of the identity

tan�1x+ tan�1y = tan�1
�

x+ y

1� xy

�
;

once with x = y = z and then with x = y = 2z

1�z2
, results in
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�
:

This in turn may be simpli�ed to take the form

(2) z4 + z3 � 6z2 � z + 1 = 0:

Hence, it su�ce to prove (2). Denoting the primitive 17th-root of unity (i.e. w17 = 1) by w0, the
assertion in (2) is equivalent to the claim that
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is a solution of the polynomial equation (2). Direct computation and the identity

w16
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0
+ � � �+ w0 + 1 = 0

coupled with w17

0
= 1, easily verify the latter statement. �
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