SOLUTION TO PROBLEM \#1562

PROPOSED BY J. WICKNER, ET AL.

Tewodros Amdeberhan

DeVry Institute, Mathematics
630 US Highway One, North Brunswick, NJ 08902 amdberhan@admin.nj.devry.edu

Problem \#1562: [P] Prove that

$$
\begin{equation*}
\tan \left(\frac{1}{4} \tan ^{-1} 4\right)=2\left(\cos \frac{6 \pi}{17}+\cos \frac{10 \pi}{17}\right) . \tag{1}
\end{equation*}
$$

Proof: Let $z:=2 \cos \frac{6 \pi}{17}+2 \cos \frac{10 \pi}{17}$. Then equation (1) becomes $\tan ^{-1} 4=4 \tan ^{-1} z$. Now, a successive application of the identity

$$
\tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right),
$$

once with $x=y=z$ and then with $x=y=\frac{2 z}{1-z^{2}}$, results in

$$
\tan ^{-1} 4=\tan ^{-1}\left[\frac{4 z\left(1-z^{2}\right)}{\left(1-z^{2}\right)^{2}-(2 z)^{2}}\right] .
$$

This in turn may be simplified to take the form

$$
\begin{equation*}
z^{4}+z^{3}-6 z^{2}-z+1=0 . \tag{2}
\end{equation*}
$$

Hence, it suffice to prove (2). Denoting the primitive 17 th-root of unity (i.e. $w^{17}=1$) by w_{0}, the assertion in (2) is equivalent to the claim that

$$
z=\text { Real part of } 2\left(w_{0}^{6}+w_{0}^{10}\right)=w_{0}^{6}+w_{0}^{10}+w_{0}^{11}+w_{0}^{7},
$$

is a solution of the polynomial equation (2). Direct computation and the identity

$$
w_{0}^{16}+w_{0}^{15}+\cdots+w_{0}+1=0
$$

coupled with $w_{0}^{17}=1$, easily verify the latter statement.

References:

[P] P 1562, Mathematics Magazine, (71) \#5, December 1998.

