SOLUTION TO PROBLEM \#621 PROPOSED BY J. BEALL AND ET AL

Tewodros Amdeberhan
DeVry Institute, Mathematics
630 US Highway One, North Brunswick, NJ 08902
amdberhan@admin.nj.devry.edu

PROBLEM: [P] For a positive integer m, let \bar{m} denote the sum of the digits of m. Find all pairs of positive integers (m, n), with $m<n$, such that $(\bar{m})^{2}=n$ and $(\bar{n})^{2}=m$.

SOLUTION: Let $n>m=m_{k} \ldots m_{1} m_{0}$, where $0 \leq m_{j} \leq 9$ are the digits of m. This immediately implies that

$$
10^{k} \leq m<n=\left(m_{k}+\cdots+m_{0}\right)^{2} \leq((k+1) 10)^{2}
$$

that is $10^{k-2} \leq(k+1)^{2}$. Consequently, $0 \leq k \leq 3$.
Hence, $m<n=\left(m_{3}+m_{2}+m_{1}+m_{0}\right)^{2} \leq(4(9))^{2}=36^{2}$. This, combined with the fact that m and n are perfect squares show that it suffices to test only the first thirty six perfect squares.

An easy check yields $\left(13^{2}, 16^{2}\right)=(169,256)$ as the only such pair!

References:

[P] P \#621, The College Mathematics Journal, (29) \#2, 1998.

