SOLUTION TO PROBLEM #621 PROPOSED BY J. BEALL AND ET AL

TEWODROS AMDEBERHAN

DeVry Institute, Mathematics 630 US Highway One, North Brunswick, NJ 08902 amdberhan@admin.nj.devry.edu

PROBLEM: [P] For a positive integer m, let \bar{m} denote the sum of the digits of m. Find all pairs of positive integers (m, n), with m < n, such that $(\bar{m})^2 = n$ and $(\bar{n})^2 = m$.

SOLUTION: Let $n > m = m_k \dots m_1 m_0$, where $0 \le m_j \le 9$ are the digits of m. This immediately implies that

 $10^k \le m < n = (m_k + \dots + m_0)^2 \le ((k+1)10)^2,$

that is $10^{k-2} \leq (k+1)^2$. Consequently, $0 \leq k \leq 3$.

Hence, $m < n = (m_3 + m_2 + m_1 + m_0)^2 \le (4(9))^2 = 36^2$. This, combined with the fact that m and n are perfect squares show that it suffices to test only the *first thirty six* perfect squares.

1

An easy check yields $(13^2, 16^2) = (169, 256)$ as the only such pair! \Box

References:

[P] P #621, The College Mathematics Journal, (29) #2, 1998.

Typeset by \mathcal{AMS} -TEX