SOLUTION TO PROBLEM \#643 PROPOSED BY W. F. TRENCH

Tewodros Amdeberhan
DeVry Institute, Mathematics
630 US Highway One, North Brunswick, NJ 08902
amdberhan@admin.nj.devry.edu

Problem \#643: Suppose that $a_{r} \geq 0$ for all nonnegative integers r and $\sum_{r=0}^{\infty} a_{r}=A<\infty$. Let

$$
\begin{equation*}
\alpha_{n}=\frac{1}{n} \sum_{r=0}^{n-1} \sum_{s=0}^{n-1} a_{r+s} \quad \text { and } \quad \beta_{n}=\frac{1}{n} \sum_{r=0}^{n-1} \sum_{s=0}^{n-1} a_{|r-s|} . \tag{1}
\end{equation*}
$$

Find $\lim _{n \rightarrow \infty} \alpha_{n}$ and $\lim _{n \rightarrow \infty} \beta_{n}$.
Solution: Under the assumption, the power series $f(x):=\sum_{r=0}^{\infty} a_{r} x^{r}$ has radius of convergence $R>1$. Hence, so does its derivative $f^{\prime}(x)=\sum_{r=1}^{\infty} r a_{r} x^{r-1}$. In particular, $f^{\prime}(1)=\sum_{r=1}^{\infty} r a_{r}$ is finite. Next, we rewrite the sums in (1) respectively as:

$$
\begin{gathered}
\alpha_{n}=\frac{1}{n} \sum_{k=0}^{2 n-2} \sum_{r+s=k} a_{r+s}=\frac{1}{n}\left\{\sum_{k=0}^{n-1}(k+1) a_{k}+\sum_{k=n}^{2 n-2}(2 n-k-1) a_{k}\right\} \quad \text { and } \\
\beta_{n}=\frac{1}{n} \sum_{k=0}^{n-1} \sum_{|r-s|=k} a_{|r-s|}=\frac{1}{n} \sum_{k=1}^{n-1} 2(n-k) a_{k}+a_{0}
\end{gathered}
$$

Consequently, we have

$$
\lim _{n \rightarrow \infty} \alpha_{n}=\lim _{n \rightarrow \infty} \frac{1}{n}\left\{\sum_{k=0}^{n-1} 2(k+1) a_{k}-\sum_{k=n}^{2 n-2}(k+1) a_{k}\right\}+\lim _{n \rightarrow \infty} 2 \sum_{k=n}^{2 n-2} a_{k}=0
$$

as the sums are partial sums of convergent series. Similarly,

$$
\lim _{n \rightarrow \infty} \beta_{n}=\lim _{n \rightarrow \infty}\left\{-a_{0}+2 \sum_{k=0}^{n-1} a_{k}-\frac{2}{n} \sum_{k=1}^{n-1} k a_{k}\right\}=-a_{0}+2 A
$$

Hence we obtain $\lim _{n \rightarrow \infty} \alpha_{n}=0$ and $\lim _{n \rightarrow \infty} \beta_{n}=2 A-a_{0}$.

References:

[P] P \#643, The College Mathematics Journal, (30) \#1, January 1999.

