SOLUTION TO PROBLEM \#648
 PROPOSED BY AYOUB

[P] Prove that if $z=\sum_{k=0}^{r}\binom{2 r+1}{2 k+1} 2^{k}$ where r is a positive integer, then there is a positive integer n such that $n<n+1<z$ form a Pythagorean triple.

Tewodros Amdeberhan, DeVry Intitute of Technology
For each positive integer $x>0$, consider the positive integers $H_{+}(x):=\sum_{k=0}^{\infty}\binom{x}{2 k} 2^{k}$ and $H_{-}(x):=\sum_{k=0}^{\infty}\binom{x}{2 k+1} 2^{k}$, where $\binom{n}{m}=0$ whenever $m>n$. Then, we prove the

Claim: $z^{2}=H_{+}^{2}(r+1) H_{+}^{2}(r)+4 H_{-}^{2}(r+1) H_{-}^{2}(r)$ with $\left|H_{+}(r+1) H_{+}(r)-2 H_{-}(r+1) H_{-}(r)\right|=1$.
Since $H_{+}(x+1)+\sqrt{2} H_{-}(x+1)=(\sqrt{2}+1)^{x+1}=(\sqrt{2}+1)\left(H_{+}(x)+\sqrt{2} H_{-}(x)\right)$, we obtain the identities $H_{-}(x+1)=H_{+}(x)+H_{-}(x)$ and $H_{+}(x+1)=H_{+}(x)+2 H_{-}(x)$. Or,

$$
\begin{equation*}
H_{+}(x)=H_{-}(x+1)-H_{-}(x) \quad \text { and } \quad H_{+}(x+1)=H_{-}(x+1)+H_{-}(x) \tag{1}
\end{equation*}
$$

Also since

$$
H_{+}(2 r+1)+\sqrt{2} H_{-}(2 r+1)=(\sqrt{2}+1)^{2 r+1}=\left[H_{+}(r+1)+\sqrt{2} H_{-}(r+1)\right]\left[H_{+}(r)+\sqrt{2} H_{-}(r)\right]
$$

after using (1) it follows that

$$
H_{-}(2 r+1)=H_{-}(r+1) H_{+}(r)+H_{+}(r+1) H_{-}(r)=H_{-}^{2}(r+1)+H_{-}^{2}(r)
$$

Consequently, we have

$$
\begin{equation*}
z^{2}=H_{-}^{2}(2 r+1)=\left[H_{-}^{2}(r+1)+H_{-}^{2}(r)\right]^{2}=\left[H_{-}^{2}(r+1)-H_{-}^{2}(r)\right]^{2}+4 H_{-}^{2}(r+1) H_{-}^{2}(r) \tag{2}
\end{equation*}
$$

Rewriting (2) as $z^{2}=\left[H_{-}(r+1)-H_{-}(r)\right]^{2}\left[H_{-}(r+1)+H_{-}(r)\right]^{2}+4 H_{-}^{2}(r+1)+H_{-}^{2}(r)$ and combining with (1) results in the first-half of the assertion

$$
z^{2}=H_{+}^{2}(r+1) H_{+}^{2}(r)+4 H_{-}^{2}(r+1) H_{-}^{2}(r) .
$$

To complete the proof of our claim, observe that

$$
\sqrt{2}+1=(\sqrt{2}-1)^{r}(\sqrt{2}+1)^{r+1}=(-1)^{r}\left[H_{+}(r)-\sqrt{2} H_{-}(r)\right]\left[H_{+}(r+1)+\sqrt{2} H_{-}(r+1)\right]
$$

which shows that $1=(-1)^{r}\left[H_{+}(r+1) H_{+}(r)-2 H_{-}(r+1) H_{-}(r)\right]$.

References:

[P] P \#648, The College Mathematics Journal, (30) \#2, March 1999.

