AN INTEGRAL OF CHOI KWOK PUI APPEARING IN A
POISSON PROCESS APPROXIMATION

In the calculation of an immigration-death process, close to a Poisson process,
it was needed to evaluate the expectation
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where Y'(t) and Z(t) are independent, Y (¢) is distributed as Binomial(m,e™*) and
Z(t) is Poisson distributed with mean A\(1 — e~*). This leads to the evaluation of
the double integral
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Here m € N and \ € RY.

The integral is given by
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The integral appearing in (2) is evaluated by Mathematica as
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where 7 is the Euler constant
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(4) v = lim 1+§+~~~+E—lnn~0.577215

and T'(0, z) is the incomplete gamma function defined by

(5) r0,2) = /w%dt.

The sum appearing in the first term in (2) can be expressed as
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General information about this function can be obtained in [2], Chapter 45.
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To evaluate the function F(\,m), let v = 1 — u and expand the term (1 — rv)™
to obtain

(1)  F(,m) = i(—nmk(?j) /Olrmke“ /()16)‘”rvmkdvdr.
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The indefinite integral of 2™ *e® can be obtained by repeated integration by parts
and it can be found in [1], 2.321.2:
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The formula (2) appears directly from here. In the sum (7) one should combine the
term corresponding to k = m with the inner term corresponding to j = m — k to
produce terms involving the integrand (1—e~*")/r. These are integrable near r = 0.

The function F(A,m) can be simplified even further using
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where H. =1+ 1/24 .-+ 1/r is the harmonic number. Therefore
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