PROOF OF FORMULA 3.194.1

$$
\int_{0}^{a} \frac{x^{\mu-1} d x}{(1+b x)^{\nu}}=\frac{a^{\mu}}{\mu}{ }_{2} F_{1}\left(\left.\begin{array}{cr}
\nu & \mu \\
\mu+1
\end{array} \right\rvert\,-a b\right)
$$

The proof employs the basic integral representation of the hypergeometric function
${ }_{2} F_{1}\left(\left.\begin{array}{cc}a & b \\ & c\end{array} \right\rvert\, z\right)=\frac{1}{B(b, c-b)} \int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a} d t \quad$ for $\operatorname{Re} c>\operatorname{Re} b>0$, which appears as entry 9.111 .

Let $x=a t$ to obtain

$$
\int_{0}^{a} \frac{x^{\mu-1} d x}{(1+b x)^{\nu}}=a^{\mu} \int_{0}^{1} t^{\mu-1}(1+a b z)^{-\nu} d t
$$

Then choose $a \mapsto \nu, b \mapsto \mu, c \mapsto 1+\mu$ and $z \mapsto-a b$ to obtain

$$
\int_{0}^{a} \frac{x^{\mu-1} d x}{(1+b x)^{\nu}}=a^{\mu} B(\mu, 1)_{2} F_{1}\left(\left.\begin{array}{rr}
\nu & \mu \\
1+\mu
\end{array} \right\rvert\,-a b\right)
$$

The result is simplified by using $B(\mu, 1)=1 / \mu$.

