PROOF OF FORMULA 3.323.1

$$
\int_{1}^{\infty} e^{-2 a x-x^{2}} d x=\frac{\sqrt{\pi}}{2} e^{a^{2}}[1-\operatorname{erf}(1+a)]=\frac{\sqrt{\pi}}{2} e^{a^{2}} \operatorname{erfc}(1+a)
$$

Complete the square to obtain

$$
-x^{2}-2 a x=-(x+a)^{2}+a^{2}
$$

The change of variables $t=x+a$ gives

$$
\int_{1}^{\infty} e^{-2 a x-x^{2}} d x=e^{a^{2}} \int_{1+a}^{\infty} e^{-t^{2}} d t
$$

The result now follows from the representation

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} d t
$$

(that appears as entry $\mathbf{8 . 2 5 0 . 1}$) and its complementary value, sometimes denoted by erfc (that appears as entry $\mathbf{8 . 2 5 0 . 4}$)

$$
\operatorname{erfc}(x)=1-\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t
$$

