PROOF OF FORMULA 3.366.1

$$
\int_{0}^{2 a} \frac{(a-x) e^{-\mu x} d x}{\sqrt{2 a x-x^{2}}}=\pi a e^{-a \mu} I_{1}(a \mu)
$$

The integral representation

$$
I_{\nu}(z)=\frac{z^{\nu}}{2^{\nu} \Gamma(\nu+1 / 2) \Gamma(1 / 2)} \int_{-1}^{1} e^{-z t}\left(1-t^{2}\right)^{\nu-1 / 2} d t
$$

appears as 8.431.1. In particular

$$
I_{1}(a)=\frac{1}{\pi} \int_{-1}^{1} \frac{t e^{t z} d t}{\sqrt{1-t^{2}}}
$$

The change of variables $x=a t$ gives

$$
\int_{0}^{2 a} \frac{(a-x) e^{-\mu x} d x}{\sqrt{2 a x-x^{2}}}=\int_{0}^{2} \frac{(1-t) e^{-a \mu t} d t}{\sqrt{2 t-t^{2}}}
$$

The result follows by completing the square to write

$$
2 t-t^{2}=1-(t-1)^{2}
$$

and using the change of variables $s=1-t$.

