PROOF OF FORMULA 3.382.1

$$
\int_{0}^{a}(a-x)^{\nu} e^{\mu x} d x=\mu^{-\nu-1} e^{a \mu} \gamma(\nu+1, a \mu)
$$

The function appearing in the answer is the incomplete gamma function

$$
\gamma(\alpha, x):=\int_{0}^{x} e^{-t} t^{\alpha-1} d t
$$

defined in 8.350.1.
Let $s=a-x$ to obtain

$$
\int_{0}^{a}(a-x)^{\nu} e^{\mu x} d x=e^{a \mu} \int_{0}^{a} s^{\nu} e^{-s \mu} d s
$$

The change of variables $t=s \mu$ to obtain

$$
\int_{0}^{a}(a-x)^{\nu} e^{\mu x} d x=e^{a \mu} \mu^{-\nu-1} \int_{0}^{a \mu} e^{-t} t^{\nu} d t
$$

The formula is established.

