PROOF OF FORMULA 3.411.20

$$
\int_{0}^{\infty} e^{-p x}\left(e^{-x}-1\right)^{n} \frac{d x}{x^{2}}=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(p+n-k) \ln (p+n-k)
$$

Define

$$
I(p)=\int_{0}^{\infty} e^{-p x}\left(e^{-x}-1\right)^{n} \frac{d x}{x^{2}}
$$

and differentiate with respect to p to obtain

$$
I^{\prime}(p)=-\int_{0}^{\infty} e^{-p x}\left(e^{-x}-1\right)^{n} \frac{d x}{x} .
$$

It follows from entry $\mathbf{3 . 4 1 1 . 1 9}$ that

$$
I^{\prime}(p)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k} \ln (p+n-k)
$$

Integrate to get

$$
I(p)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}[(p+n-k) \ln (p+n-k)-(p+n-k)]+C
$$

Observe first that

$$
\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(p+n-k)=(p+n) \sum_{k=0}^{n}(-1)^{k}\binom{n}{k}-\sum_{k=0}^{n}(-1)^{k} k\binom{n}{k}=0
$$

since both sums vanish by considering $(1-x)^{n}$ and its derivative at $x=1$. Therefore

$$
I(p)=\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}(p+n-k) \ln (p+n-k)+C .
$$

Now let $p \rightarrow \infty$ to see that $C=0$.

