PROOF OF FORMULA 3.419.3

$$\int_{-\infty}^{\infty} \frac{x^2 \, dx}{(\beta + e^x)(1 - e^{-x})} = \frac{\left(\pi^2 + \ln^2 \beta\right) \ln \beta}{3(\beta + 1)}$$

In **Part 1**, it has been shown that

$$h_n(a) = \int_0^\infty \frac{\ln^{n-1} t \, dt}{(t-1)(t+a)}$$

is given by

$$n(1+a)h_n(a) = (-1)^n n! [1+(-1)^n] \zeta(n) + \sum_{j=0}^{\lfloor n/2 \rfloor} {n \choose 2j} (2^{2j}-2) (-1)^{j-1} B_{2j} \pi^{2j} \ln^{n-2j} a.$$

The change of variables $t = e^{-x}$ shows that

$$h_n(a) = \int_{-\infty}^{\infty} \frac{x^{n-1} \, dx}{(1 - e^{-x})(a + e^{-x})}.$$

The present entry corresponds to the value n = 3.