PROOF OF FORMULA 3.457.1

$$
\int_{0}^{\infty} x e^{-x}\left(1-e^{-2 x}\right)^{n-1 / 2} d x=\frac{(2 n-1)!!\pi}{4(2 n)!!}(\gamma+\psi(n+1)+2 \ln 2)
$$

The change of variables $t=e^{-x}$ gives

$$
\int_{0}^{\infty} x e^{-x}\left(1-e^{-2 x}\right)^{n-1 / 2} d x=-\int_{0}^{1}\left(1-t^{2}\right)^{n-1 / 2} \ln t d t
$$

The result now follows from entry 4.241 .5 which states that

$$
\int_{0}^{1} \sqrt{\left(1-x^{2}\right)^{2 n-1}} \ln x d x=-\frac{(2 n-1)!!}{(2 n)!!} \frac{\pi}{4}\left(2 \ln 2+\sum_{k=1}^{n} \frac{1}{k}\right)
$$

This form is equivalent to the one stated here.

