PROOF OF FORMULA 3.466.3

$$
\int_{0}^{1} \frac{e^{x^{2}}-1}{x^{2}} d x=\sum_{k=1}^{\infty} \frac{1}{(2 k-1) k!}
$$

Expand the integrand as

$$
\sum_{k=1}^{\infty} \frac{x^{2 k-2}}{k!}
$$

and integrate term by term.
Mathematica gives $1-e+\sqrt{\pi} \operatorname{erfi}(1)$ for the value of the series. This is the imaginary error function defined by $\operatorname{erf}(i z) / i$.

