PROOF OF FORMULA 3.468.1

$$
\int_{u \sqrt{2}}^{\infty} \frac{e^{-x^{2}} d x}{x \sqrt{x^{2}-u^{2}}}=\frac{\pi}{4 u}(1-\operatorname{erf}(u))^{2}
$$

Let $x=u t$ and then $t=\sec \varphi$ to obtain

$$
\int_{u \sqrt{2}}^{\infty} \frac{e^{-x^{2}} d x}{x \sqrt{x^{2}-u^{2}}}=\frac{e^{-u^{2}}}{u} \int_{\pi / 4}^{\pi / 2} e^{-u^{2} \tan ^{2} \varphi} d \varphi
$$

Denote the integral by $f(u)$ and differentiate to get

$$
f^{\prime}(u)=-2 u \int_{\pi / 4}^{\pi / 2} e^{-u^{2} \tan ^{2} \varphi} \sec ^{2} \varphi d \varphi+2 u f(u)
$$

Denote this last integral by $g(u)$ and let $s=\tan \varphi$ to obtain

$$
g(u)=\frac{\sqrt{\pi}}{2 u}[1-\operatorname{erf}(u)]
$$

so that

$$
f^{\prime}(u)=-\sqrt{\pi}(1-\operatorname{erf}(u))+2 u f(u)
$$

This can be written as

$$
\frac{d}{d u}\left[f(u) e^{-u^{2}}\right]=-\sqrt{\pi} e^{-u^{2}}(1-\operatorname{erf}(u))=\frac{\pi}{4} \frac{d}{d u}(1-\operatorname{erf}(u))^{2}
$$

Integrate and use the initial condition $f(0)=\pi / 4$ to obtain the result.

