PROOF OF FORMULA 3.522.1

$$
\int_{0}^{\infty} \frac{x d x}{\left(b^{2}+x^{2}\right) \sinh a x}=\frac{\pi}{2 a b}+\pi \sum_{k=1}^{\infty} \frac{(-1)^{k}}{a b+\pi k}
$$

The change of variables $x=b t$ shows that is suffices to assume $b=1$. Extend the integrand f to the whole real line using its symmetry. The integrand has poles in the upper half plane at $z=i$ and $z=\pi k i / a$. Assume first that $a \neq \pi k$ so these poles are simple.

Integrate over a semi-circle centered at the origin and radius R. The residues are

$$
\begin{aligned}
\operatorname{Res}(f ; i) & =\frac{1}{4 \sinh (i a)}=\frac{1}{4 i \sin a} \\
\operatorname{Res}(f ; \pi i k / a) & =\frac{(-1)^{k} \pi i k}{2\left(a^{2}-\pi^{2} k^{2}\right)}
\end{aligned}
$$

The residue theorem and a partial fraction decomposition give the value

$$
\int_{0}^{\infty} \frac{x d x}{\left(b^{2}+x^{2}\right) \sinh a x}=\frac{\pi}{2}\left(\frac{1}{\sin a}-\sum_{k=1}^{\infty} \frac{(-1)^{k}}{a-\pi k}+\sum_{k=1}^{\infty} \frac{(-1)^{k}}{a+\pi k}\right)
$$

and the result follows from the expansion

$$
\frac{1}{\sin a}=\sum_{k=-\infty}^{\infty} \frac{(-1)^{k}}{a+\pi k}
$$

The case of $a=\pi k$, thay yields a double pole, is treated as a limiting case with the same result.

